Cargando…
A computational method for clinically relevant cancer stratification and driver mutation module discovery using personal genomics profiles
BACKGROUND: Personalized genomics instability, e.g., somatic mutations, is believed to contribute to the heterogeneous drug responses in patient cohorts. However, it is difficult to discover personalized driver mutations that are predictive of drug sensitivity owing to diverse and complex mutations...
Autores principales: | Wang, Lin, Li, Fuhai, Sheng, Jianting, Wong, Stephen TC |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4474541/ https://www.ncbi.nlm.nih.gov/pubmed/26099165 http://dx.doi.org/10.1186/1471-2164-16-S7-S6 |
Ejemplares similares
-
DrugComboRanker: drug combination discovery based on target network analysis
por: Huang, Lei, et al.
Publicado: (2014) -
Computational methods for cancer driver discovery: A survey
por: Pham, Vu Viet Hoang, et al.
Publicado: (2021) -
Using iterative cluster merging with improved gap statistics to perform online phenotype discovery in the context of high-throughput RNAi screens
por: Yin, Zheng, et al.
Publicado: (2008) -
AI-Driver: an ensemble method for identifying driver mutations in personal cancer genomes
por: Wang, Haoxuan, et al.
Publicado: (2020) -
Clinical relevance of oncogenic driver mutations identified in endometrial carcinoma
por: Watanabe, Takafumi, et al.
Publicado: (2021)