Cargando…
Naja naja oxiana Cobra Venom Cytotoxins CTI and CTII Disrupt Mitochondrial Membrane Integrity: Implications for Basic Three-Fingered Cytotoxins
Cobra venom cytotoxins are basic three-fingered, amphipathic, non-enzymatic proteins that constitute a major fraction of cobra venom. While cytotoxins cause mitochondrial dysfunction in different cell types, the mechanisms by which cytotoxins bind to mitochondria remain unknown. We analyzed the abil...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4474699/ https://www.ncbi.nlm.nih.gov/pubmed/26091109 http://dx.doi.org/10.1371/journal.pone.0129248 |
_version_ | 1782377322287988736 |
---|---|
author | Gasanov, Sardar E. Shrivastava, Indira H. Israilov, Firuz S. Kim, Aleksandr A. Rylova, Kamila A. Zhang, Boris Dagda, Ruben K. |
author_facet | Gasanov, Sardar E. Shrivastava, Indira H. Israilov, Firuz S. Kim, Aleksandr A. Rylova, Kamila A. Zhang, Boris Dagda, Ruben K. |
author_sort | Gasanov, Sardar E. |
collection | PubMed |
description | Cobra venom cytotoxins are basic three-fingered, amphipathic, non-enzymatic proteins that constitute a major fraction of cobra venom. While cytotoxins cause mitochondrial dysfunction in different cell types, the mechanisms by which cytotoxins bind to mitochondria remain unknown. We analyzed the abilities of CTI and CTII, S-type and P-type cytotoxins from Naja naja oxiana respectively, to associate with isolated mitochondrial fractions or with model membranes that simulate the mitochondrial lipid environment by using a myriad of biophysical techniques. Phosphorus-31 nuclear magnetic resonance ((31)P-NMR) spectroscopy data suggest that both cytotoxins bind to isolated mitochondrial fractions and promote the formation of aberrant non-bilayer structures. We then hypothesized that CTI and CTII bind to cardiolipin (CL) to disrupt mitochondrial membranes. Collectively, (31)P-NMR, electron paramagnetic resonance (EPR), proton NMR ((1)H-NMR), deuterium NMR ((2)H-NMR) spectroscopy, differential scanning calorimetry, and erythrosine phosphorescence assays suggest that CTI and CTII bind to CL to generate non-bilayer structures and promote the permeabilization, dehydration and fusion of large unilamellar phosphatidylcholine (PC) liposomes enriched with CL. On the other hand, CTII but not CTI caused biophysical alterations of large unilamellar PC liposomes enriched with phosphatidylserine (PS). Mechanistically, single molecule docking simulations identified putative CL, PS and PC binding sites in CTI and CTII. While the predicted binding sites for PS and PC share a high number of interactive amino acid residues in CTI and CTII, the CL biding sites in CTII and CTI are more divergent as it contains additional interactive amino acid residues. Overall, our data suggest that cytotoxins physically associate with mitochondrial membranes by binding to CL to disrupt mitochondrial structural integrity. |
format | Online Article Text |
id | pubmed-4474699 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-44746992015-06-30 Naja naja oxiana Cobra Venom Cytotoxins CTI and CTII Disrupt Mitochondrial Membrane Integrity: Implications for Basic Three-Fingered Cytotoxins Gasanov, Sardar E. Shrivastava, Indira H. Israilov, Firuz S. Kim, Aleksandr A. Rylova, Kamila A. Zhang, Boris Dagda, Ruben K. PLoS One Research Article Cobra venom cytotoxins are basic three-fingered, amphipathic, non-enzymatic proteins that constitute a major fraction of cobra venom. While cytotoxins cause mitochondrial dysfunction in different cell types, the mechanisms by which cytotoxins bind to mitochondria remain unknown. We analyzed the abilities of CTI and CTII, S-type and P-type cytotoxins from Naja naja oxiana respectively, to associate with isolated mitochondrial fractions or with model membranes that simulate the mitochondrial lipid environment by using a myriad of biophysical techniques. Phosphorus-31 nuclear magnetic resonance ((31)P-NMR) spectroscopy data suggest that both cytotoxins bind to isolated mitochondrial fractions and promote the formation of aberrant non-bilayer structures. We then hypothesized that CTI and CTII bind to cardiolipin (CL) to disrupt mitochondrial membranes. Collectively, (31)P-NMR, electron paramagnetic resonance (EPR), proton NMR ((1)H-NMR), deuterium NMR ((2)H-NMR) spectroscopy, differential scanning calorimetry, and erythrosine phosphorescence assays suggest that CTI and CTII bind to CL to generate non-bilayer structures and promote the permeabilization, dehydration and fusion of large unilamellar phosphatidylcholine (PC) liposomes enriched with CL. On the other hand, CTII but not CTI caused biophysical alterations of large unilamellar PC liposomes enriched with phosphatidylserine (PS). Mechanistically, single molecule docking simulations identified putative CL, PS and PC binding sites in CTI and CTII. While the predicted binding sites for PS and PC share a high number of interactive amino acid residues in CTI and CTII, the CL biding sites in CTII and CTI are more divergent as it contains additional interactive amino acid residues. Overall, our data suggest that cytotoxins physically associate with mitochondrial membranes by binding to CL to disrupt mitochondrial structural integrity. Public Library of Science 2015-06-19 /pmc/articles/PMC4474699/ /pubmed/26091109 http://dx.doi.org/10.1371/journal.pone.0129248 Text en © 2015 Gasanov et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Gasanov, Sardar E. Shrivastava, Indira H. Israilov, Firuz S. Kim, Aleksandr A. Rylova, Kamila A. Zhang, Boris Dagda, Ruben K. Naja naja oxiana Cobra Venom Cytotoxins CTI and CTII Disrupt Mitochondrial Membrane Integrity: Implications for Basic Three-Fingered Cytotoxins |
title |
Naja naja oxiana Cobra Venom Cytotoxins CTI and CTII Disrupt Mitochondrial Membrane Integrity: Implications for Basic Three-Fingered Cytotoxins |
title_full |
Naja naja oxiana Cobra Venom Cytotoxins CTI and CTII Disrupt Mitochondrial Membrane Integrity: Implications for Basic Three-Fingered Cytotoxins |
title_fullStr |
Naja naja oxiana Cobra Venom Cytotoxins CTI and CTII Disrupt Mitochondrial Membrane Integrity: Implications for Basic Three-Fingered Cytotoxins |
title_full_unstemmed |
Naja naja oxiana Cobra Venom Cytotoxins CTI and CTII Disrupt Mitochondrial Membrane Integrity: Implications for Basic Three-Fingered Cytotoxins |
title_short |
Naja naja oxiana Cobra Venom Cytotoxins CTI and CTII Disrupt Mitochondrial Membrane Integrity: Implications for Basic Three-Fingered Cytotoxins |
title_sort | naja naja oxiana cobra venom cytotoxins cti and ctii disrupt mitochondrial membrane integrity: implications for basic three-fingered cytotoxins |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4474699/ https://www.ncbi.nlm.nih.gov/pubmed/26091109 http://dx.doi.org/10.1371/journal.pone.0129248 |
work_keys_str_mv | AT gasanovsardare najanajaoxianacobravenomcytotoxinsctiandctiidisruptmitochondrialmembraneintegrityimplicationsforbasicthreefingeredcytotoxins AT shrivastavaindirah najanajaoxianacobravenomcytotoxinsctiandctiidisruptmitochondrialmembraneintegrityimplicationsforbasicthreefingeredcytotoxins AT israilovfiruzs najanajaoxianacobravenomcytotoxinsctiandctiidisruptmitochondrialmembraneintegrityimplicationsforbasicthreefingeredcytotoxins AT kimaleksandra najanajaoxianacobravenomcytotoxinsctiandctiidisruptmitochondrialmembraneintegrityimplicationsforbasicthreefingeredcytotoxins AT rylovakamilaa najanajaoxianacobravenomcytotoxinsctiandctiidisruptmitochondrialmembraneintegrityimplicationsforbasicthreefingeredcytotoxins AT zhangboris najanajaoxianacobravenomcytotoxinsctiandctiidisruptmitochondrialmembraneintegrityimplicationsforbasicthreefingeredcytotoxins AT dagdarubenk najanajaoxianacobravenomcytotoxinsctiandctiidisruptmitochondrialmembraneintegrityimplicationsforbasicthreefingeredcytotoxins |