Cargando…
Influence of Solvent Polarity and DNA-Binding on Spectral Properties of Quaternary Benzo[c]phenanthridine Alkaloids
Quaternary benzo[c]phenanthridine alkaloids are secondary metabolites of the plant families Papaveraceae, Rutaceae, and Ranunculaceae with anti-inflammatory, antifungal, antimicrobial and anticancer activities. Their spectral changes induced by the environment could be used to understand their inter...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4474729/ https://www.ncbi.nlm.nih.gov/pubmed/26091027 http://dx.doi.org/10.1371/journal.pone.0129925 |
_version_ | 1782377329299816448 |
---|---|
author | Rájecký, Michal Šebrlová, Kristýna Mravec, Filip Táborský, Petr |
author_facet | Rájecký, Michal Šebrlová, Kristýna Mravec, Filip Táborský, Petr |
author_sort | Rájecký, Michal |
collection | PubMed |
description | Quaternary benzo[c]phenanthridine alkaloids are secondary metabolites of the plant families Papaveraceae, Rutaceae, and Ranunculaceae with anti-inflammatory, antifungal, antimicrobial and anticancer activities. Their spectral changes induced by the environment could be used to understand their interaction with biomolecules as well as for analytical purposes. Spectral shifts, quantum yield and changes in lifetime are presented for the free form of alkaloids in solvents of different polarity and for alkaloids bound to DNA. Quantum yields range from 0.098 to 0.345 for the alkanolamine form and are below 0.033 for the iminium form. Rise of fluorescence lifetimes (from 2–5 ns to 3–10 ns) and fluorescence intensity are observed after binding of the iminium form to the DNA for most studied alkaloids. The alkanolamine form does not bind to DNA. Acid-base equilibrium constant of macarpine is determined to be 8.2–8.3. Macarpine is found to have the highest increase of fluorescence upon DNA binding, even under unfavourable pH conditions. This is probably a result of its unique methoxy substitution at C(12) a characteristic not shared with other studied alkaloids. Association constant for macarpine-DNA interaction is 700000 M(-1). |
format | Online Article Text |
id | pubmed-4474729 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-44747292015-06-30 Influence of Solvent Polarity and DNA-Binding on Spectral Properties of Quaternary Benzo[c]phenanthridine Alkaloids Rájecký, Michal Šebrlová, Kristýna Mravec, Filip Táborský, Petr PLoS One Research Article Quaternary benzo[c]phenanthridine alkaloids are secondary metabolites of the plant families Papaveraceae, Rutaceae, and Ranunculaceae with anti-inflammatory, antifungal, antimicrobial and anticancer activities. Their spectral changes induced by the environment could be used to understand their interaction with biomolecules as well as for analytical purposes. Spectral shifts, quantum yield and changes in lifetime are presented for the free form of alkaloids in solvents of different polarity and for alkaloids bound to DNA. Quantum yields range from 0.098 to 0.345 for the alkanolamine form and are below 0.033 for the iminium form. Rise of fluorescence lifetimes (from 2–5 ns to 3–10 ns) and fluorescence intensity are observed after binding of the iminium form to the DNA for most studied alkaloids. The alkanolamine form does not bind to DNA. Acid-base equilibrium constant of macarpine is determined to be 8.2–8.3. Macarpine is found to have the highest increase of fluorescence upon DNA binding, even under unfavourable pH conditions. This is probably a result of its unique methoxy substitution at C(12) a characteristic not shared with other studied alkaloids. Association constant for macarpine-DNA interaction is 700000 M(-1). Public Library of Science 2015-06-19 /pmc/articles/PMC4474729/ /pubmed/26091027 http://dx.doi.org/10.1371/journal.pone.0129925 Text en © 2015 Rájecký et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Rájecký, Michal Šebrlová, Kristýna Mravec, Filip Táborský, Petr Influence of Solvent Polarity and DNA-Binding on Spectral Properties of Quaternary Benzo[c]phenanthridine Alkaloids |
title | Influence of Solvent Polarity and DNA-Binding on Spectral Properties of Quaternary Benzo[c]phenanthridine Alkaloids |
title_full | Influence of Solvent Polarity and DNA-Binding on Spectral Properties of Quaternary Benzo[c]phenanthridine Alkaloids |
title_fullStr | Influence of Solvent Polarity and DNA-Binding on Spectral Properties of Quaternary Benzo[c]phenanthridine Alkaloids |
title_full_unstemmed | Influence of Solvent Polarity and DNA-Binding on Spectral Properties of Quaternary Benzo[c]phenanthridine Alkaloids |
title_short | Influence of Solvent Polarity and DNA-Binding on Spectral Properties of Quaternary Benzo[c]phenanthridine Alkaloids |
title_sort | influence of solvent polarity and dna-binding on spectral properties of quaternary benzo[c]phenanthridine alkaloids |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4474729/ https://www.ncbi.nlm.nih.gov/pubmed/26091027 http://dx.doi.org/10.1371/journal.pone.0129925 |
work_keys_str_mv | AT rajeckymichal influenceofsolventpolarityanddnabindingonspectralpropertiesofquaternarybenzocphenanthridinealkaloids AT sebrlovakristyna influenceofsolventpolarityanddnabindingonspectralpropertiesofquaternarybenzocphenanthridinealkaloids AT mravecfilip influenceofsolventpolarityanddnabindingonspectralpropertiesofquaternarybenzocphenanthridinealkaloids AT taborskypetr influenceofsolventpolarityanddnabindingonspectralpropertiesofquaternarybenzocphenanthridinealkaloids |