Cargando…
RNA regulation by Poly(ADP-ribose) polymerases
Post-transcriptional regulation of RNA facilitates the fine-tuning of gene expression. It occurs through multiple pathways that include the nuclear processing of mRNA and its precursors, mRNA silencing, regulation of mRNA decay, and regulation of translation. Poly(ADP-ribose) polymerases (PARPs), en...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475274/ https://www.ncbi.nlm.nih.gov/pubmed/26091344 http://dx.doi.org/10.1016/j.molcel.2015.01.037 |
Sumario: | Post-transcriptional regulation of RNA facilitates the fine-tuning of gene expression. It occurs through multiple pathways that include the nuclear processing of mRNA and its precursors, mRNA silencing, regulation of mRNA decay, and regulation of translation. Poly(ADP-ribose) polymerases (PARPs), enzymes that modify target proteins with ADP-ribose, play important roles in many of the RNA regulatory pathways through multiple mechanisms. For example, RNA-binding PARPs can target specific transcripts for regulation, ADP-ribosylation of RNA-regulatory proteins can alter their localization, activity or RNA-binding, and non-covalent interactions of RNA-binding proteins with poly(ADP-ribose) can affect their function. In addition to regulating RNA during non-stress conditions, PARPs mediate RNA regulation during cellular stress conditions that are critical for the proper execution of a stress response. In this review, we summarize the current knowledge regarding PARP-dependent regulation of RNAs, and describe how by modulating RNA processing, translation and decay, PARPs impact multiple processes in the cell. |
---|