Cargando…
Free-Energy-Based Design Policy for Robust Network Control against Environmental Fluctuation
Bioinspired network control is a promising approach for realizing robust network controls. It relies on a probabilistic mechanism composed of positive and negative feedback that allows the system to eventually stabilize on the best solution. When the best solution fails due to environmental fluctuat...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475758/ https://www.ncbi.nlm.nih.gov/pubmed/26167525 http://dx.doi.org/10.1155/2015/464031 |
Sumario: | Bioinspired network control is a promising approach for realizing robust network controls. It relies on a probabilistic mechanism composed of positive and negative feedback that allows the system to eventually stabilize on the best solution. When the best solution fails due to environmental fluctuation, the system cannot keep its function until the system finds another solution again. To prevent the temporal loss of the function, the system should prepare some solution candidates and stochastically select available one from them. However, most bioinspired network controls are not designed with this issue in mind. In this paper, we propose a thermodynamics-based design policy that allows systems to retain an appropriate degree of randomness depending on the degree of environmental fluctuation, which prepares the system for the occurrence of environmental fluctuation. Furthermore, we verify the design policy by using an attractor selection model-based multipath routing to run simulation experiments. |
---|