Cargando…

Physicochemical Characterization and Cytotoxicity Screening of a Novel Colloidal Nanogold-Based Phenytoin Conjugate

A novel, colloidal nanogold-based drug delivery system for phenytoin, a well-known anti-epileptic drug with an enhanced efflux via P-glycoprotein, has been proposed in this study. The vital physical properties that would aid in predicting the biological interaction of this system were profiled using...

Descripción completa

Detalles Bibliográficos
Autores principales: Suneetha, Susan Cleave A, Raghupathy, Bala Praveen Chakkravarthy, Suresh, P. K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Scientia Pharmaceutica 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475805/
https://www.ncbi.nlm.nih.gov/pubmed/26171330
http://dx.doi.org/10.3797/scipharm.1402-03
Descripción
Sumario:A novel, colloidal nanogold-based drug delivery system for phenytoin, a well-known anti-epileptic drug with an enhanced efflux via P-glycoprotein, has been proposed in this study. The vital physical properties that would aid in predicting the biological interaction of this system were profiled using various techniques such as UV-Vis, DLS, and TEM in corroboration with theoretical calculations. It was significant to note that the binding of phenytoin to colloidal nanogold was strongly pH-dependent with the optimum at pH 5.5 and a consistently reproducible spectral shift. Analysis of the conjugate by FTIR revealed that the imide functional group of phenytoin mediated a dative coordinate bond to colloidal nanogold at the optimum pH. The amount of the drug bound to the gold was quantified to be 85.8±2.5% (w/v) by HPLC. Hypothetically, the surface charge of the conjugate could possibly imply charge-mediated uptake across the cell membrane. Further, the novel conjugate was screened for its cytotoxicity in two cell lines and the dosage range was identified. Subsequent development, thorough evaluations in suitable model systems, and the potential for bioimaging to track the payload would validate our hypothesis on the conjugate for better intracellular retention at the site of action, and thereby achieve the targeted delivery.