Cargando…

An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors

Transcription factors (TFs) play key roles in both development and stress responses. By integrating into and rewiring original systems, novel TFs contribute significantly to the evolution of transcriptional regulatory networks. Here, we report a high-confidence transcriptional regulatory map coverin...

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Jinpu, He, Kun, Tang, Xing, Li, Zhe, Lv, Le, Zhao, Yi, Luo, Jingchu, Gao, Ge
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4476157/
https://www.ncbi.nlm.nih.gov/pubmed/25750178
http://dx.doi.org/10.1093/molbev/msv058
Descripción
Sumario:Transcription factors (TFs) play key roles in both development and stress responses. By integrating into and rewiring original systems, novel TFs contribute significantly to the evolution of transcriptional regulatory networks. Here, we report a high-confidence transcriptional regulatory map covering 388 TFs from 47 families in Arabidopsis. Systematic analysis of this map revealed the architectural heterogeneity of developmental and stress response subnetworks and identified three types of novel network motifs that are absent from unicellular organisms and essential for multicellular development. Moreover, TFs of novel families that emerged during plant landing present higher binding specificities and are preferentially wired into developmental processes and these novel network motifs. Further unveiled connection between the binding specificity and wiring preference of TFs explains the wiring preferences of novel-family TFs. These results reveal distinct functional and evolutionary features of novel TFs, suggesting a plausible mechanism for their contribution to the evolution of multicellular organisms.