Cargando…
Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space
[Image: see text] Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of ef...
Autores principales: | Hansen, Katja, Biegler, Franziska, Ramakrishnan, Raghunathan, Pronobis, Wiktor, von Lilienfeld, O. Anatole, Müller, Klaus-Robert, Tkatchenko, Alexandre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2015
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4476293/ https://www.ncbi.nlm.nih.gov/pubmed/26113956 http://dx.doi.org/10.1021/acs.jpclett.5b00831 |
Ejemplares similares
-
Modeling of molecular atomization energies using machine learning
por: Rupp, Matthias, et al.
Publicado: (2012) -
Ab Initio Machine Learning in Chemical Compound Space
por: Huang, Bing, et al.
Publicado: (2021) -
Machine Learning of Parameters for Accurate Semiempirical
Quantum Chemical Calculations
por: Dral, Pavlo O., et al.
Publicado: (2015) -
Data enhanced Hammett-equation: reaction barriers in chemical space
por: Bragato, Marco, et al.
Publicado: (2020) -
Quantum chemistry structures and properties of 134 kilo molecules
por: Ramakrishnan, Raghunathan, et al.
Publicado: (2014)