Cargando…

The Leukocyte Immunoglobulin-Like Receptor Family Member LILRB5 Binds to HLA-Class I Heavy Chains

OBJECTIVE: The leukocyte immunoglobulin-like receptor (LILR) family includes inhibitory and stimulatory members which bind to classical and non-classical HLA-class I. The ligands for many LILR including LILRB5 have not yet been identified. METHODS: We generated C-terminal eGFP and N-terminal FLAG-ta...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Zhiyong, Hatano, Hiroko, Shaw, Jacqueline, Olde Nordkamp, Marloes, Jiang, Guosheng, Li, Demin, Kollnberger, Simon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4476610/
https://www.ncbi.nlm.nih.gov/pubmed/26098415
http://dx.doi.org/10.1371/journal.pone.0129063
Descripción
Sumario:OBJECTIVE: The leukocyte immunoglobulin-like receptor (LILR) family includes inhibitory and stimulatory members which bind to classical and non-classical HLA-class I. The ligands for many LILR including LILRB5 have not yet been identified. METHODS: We generated C-terminal eGFP and N-terminal FLAG-tagged fusion constructs for monitoring LILR expression. We screened for LILR binding to HLA-class I by tetramer staining of 293T cells transfected with LILRA1, A4, A5 A6 and LILRB2 and LILRB5. We also studied HLA class I tetramer binding to LILRB5 on peripheral monocyte cells. LILRB5 binding to HLA-class I heavy chains was confirmed by co-immunoprecipitation. RESULTS: HLA-B27 (B27) free heavy chain (FHC) dimer but not other HLA-class I stained LILRB5-transfected 293T cells. B27 dimer binding to LILRB5 was blocked with the class I heavy chain antibody HC10 and anti-LILRB5 antisera. B27 dimers also bound to LILRB5 on peripheral monocytes. HLA-B7 and B27 heavy chains co-immunoprecipitated with LILRB5 in transduced B and rat basophil RBL cell lines. CONCLUSIONS: Our findings show that class I free heavy chains are ligands for LILRB5. The unique binding specificity of LILRB5 for HLA-class I heavy chains probably results from differences in the D1 and D2 immunoglobulin-like binding domains which are distinct from other LILR which bind to β2m-associated HLA-class I.