Cargando…

Higher Serum Angiotensinogen Is an Indicator of IgA Vasculitis with Nephritis Revealed by Comparative Proteomes Analysis

IgA vasculitis (IgAV), previously named as Henoch–Schönlein purpura, is the most common systematic vasculitis with unknown etiology. Lack of appropriate study system and/or animal model limits the understanding of its molecular pathogenesis and hinders the identification of targets for rational ther...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Xuelian, Yin, Wei, Ding, Yan, Cui, Shu-jian, Luan, Jiangwei, Zhao, Peiwei, Yue, Xin, Yu, Chunhua, Laing, Xiaohui, Zhao, YuLan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4476708/
https://www.ncbi.nlm.nih.gov/pubmed/26098644
http://dx.doi.org/10.1371/journal.pone.0130536
Descripción
Sumario:IgA vasculitis (IgAV), previously named as Henoch–Schönlein purpura, is the most common systematic vasculitis with unknown etiology. Lack of appropriate study system and/or animal model limits the understanding of its molecular pathogenesis and hinders the identification of targets for rational therapy, especially for its long-term complication, IgAV nephritis (IgAVN). In this study, we applied comparative analysis of serum proteomes to obtain an insight about disease pathogenesis. This study has utilized high sensitivity nanoscale ultra performance liquid chromatography-mass spectrometry (nanoLC-MS/MS) to investigate the alterations in serum proteomic profiles in patients with IgAV (n=6), IgAVN (n=6) and healthy subjects (n=7). The differentially expressed proteins were subjected to functional pathway analysis by PANTHER and DAVID software. We identified 107 differentially expressed proteins among three different groups, and functional analysis suggested that, in addition to earlier reported pathways, such as acute phase response, immune response, complement and blood coagulation pathways, hemostasis and Wnt signaling pathway were probably involved in pathogenesis of IgAV. A few differentially abundant proteins identified, such as C4a, serum amyloid A, angiotensinogen, and kininogen 1, were further validated by ELISA. More importantly, we found that angiotensinogen concentration is correlated with IgAVN and could be used as a potential marker for the progression of IgAV. This is the first report of analyzing the proteomic alterations in IgAV patients and the differentially proteins identified in this study may enhance understanding of the pathology of IgAV and a few of them may be used to monitor disease progression.