Cargando…

A Sensitive and Specific Neural Signature for Picture-Induced Negative Affect

Neuroimaging has identified many correlates of emotion but has not yet yielded brain representations predictive of the intensity of emotional experiences in individuals. We used machine learning to identify a sensitive and specific signature of emotional responses to aversive images. This signature...

Descripción completa

Detalles Bibliográficos
Autores principales: Chang, Luke J., Gianaros, Peter J., Manuck, Stephen B., Krishnan, Anjali, Wager, Tor D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4476709/
https://www.ncbi.nlm.nih.gov/pubmed/26098873
http://dx.doi.org/10.1371/journal.pbio.1002180
Descripción
Sumario:Neuroimaging has identified many correlates of emotion but has not yet yielded brain representations predictive of the intensity of emotional experiences in individuals. We used machine learning to identify a sensitive and specific signature of emotional responses to aversive images. This signature predicted the intensity of negative emotion in individual participants in cross validation (n =121) and test (n = 61) samples (high–low emotion = 93.5% accuracy). It was unresponsive to physical pain (emotion–pain = 92% discriminative accuracy), demonstrating that it is not a representation of generalized arousal or salience. The signature was comprised of mesoscale patterns spanning multiple cortical and subcortical systems, with no single system necessary or sufficient for predicting experience. Furthermore, it was not reducible to activity in traditional “emotion-related” regions (e.g., amygdala, insula) or resting-state networks (e.g., “salience,” “default mode”). Overall, this work identifies differentiable neural components of negative emotion and pain, providing a basis for new, brain-based taxonomies of affective processes.