Cargando…
Multiclass Support Vector Machine-Based Lesion Mapping Predicts Functional Outcome in Ischemic Stroke Patients
PURPOSE: The aim of this study was to investigate if ischemic stroke final infarction volume and location can be used to predict the associated functional outcome using a multi-class support vector machine (SVM). MATERIAL AND METHODS: Sixty-eight follow-up MR FLAIR datasets of ischemic stroke patien...
Autores principales: | Forkert, Nils Daniel, Verleger, Tobias, Cheng, Bastian, Thomalla, Götz, Hilgetag, Claus C., Fiehler, Jens |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4476759/ https://www.ncbi.nlm.nih.gov/pubmed/26098418 http://dx.doi.org/10.1371/journal.pone.0129569 |
Ejemplares similares
-
Technical considerations of a game-theoretical approach for lesion symptom mapping
por: Zavaglia, Melissa, et al.
Publicado: (2016) -
Mapping causal functional contributions derived from the clinical assessment of brain damage after stroke
por: Zavaglia, Melissa, et al.
Publicado: (2015) -
Impact of Severe Extracranial ICA Stenosis on MRI Perfusion and Diffusion Parameters in Acute Ischemic Stroke
por: Kaesemann, Philipp, et al.
Publicado: (2014) -
Stroke Lesion Segmentation in FLAIR MRI Datasets Using Customized Markov Random Fields
por: Subbanna, Nagesh K., et al.
Publicado: (2019) -
Technical considerations of multi-parametric tissue outcome prediction methods in acute ischemic stroke patients
por: Winder, Anthony J., et al.
Publicado: (2019)