Cargando…

Norepinephrine-induced apoptotic and hypertrophic responses in H9c2 cardiac myoblasts are characterized by different repertoire of reactive oxygen species generation

Despite recent advances, the role of ROS in mediating hypertrophic and apoptotic responses in cardiac myocytes elicited by norepinephrine (NE) is rather poorly understood. We demonstrate through our experiments that H9c2 cardiac myoblasts treated with 2 µM NE (hypertrophic dose) generate DCFH-DA pos...

Descripción completa

Detalles Bibliográficos
Autores principales: Thakur, Anita, Alam, Md. Jahangir, Ajayakumar, MR, Ghaskadbi, Saroj, Sharma, Manish, Goswami, Shyamal K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477046/
https://www.ncbi.nlm.nih.gov/pubmed/26070033
http://dx.doi.org/10.1016/j.redox.2015.05.005
_version_ 1782377681501814784
author Thakur, Anita
Alam, Md. Jahangir
Ajayakumar, MR
Ghaskadbi, Saroj
Sharma, Manish
Goswami, Shyamal K.
author_facet Thakur, Anita
Alam, Md. Jahangir
Ajayakumar, MR
Ghaskadbi, Saroj
Sharma, Manish
Goswami, Shyamal K.
author_sort Thakur, Anita
collection PubMed
description Despite recent advances, the role of ROS in mediating hypertrophic and apoptotic responses in cardiac myocytes elicited by norepinephrine (NE) is rather poorly understood. We demonstrate through our experiments that H9c2 cardiac myoblasts treated with 2 µM NE (hypertrophic dose) generate DCFH-DA positive ROS only for 2 h; while those treated with 100 µM NE (apoptotic dose) sustains generation for 48 h, followed by apoptosis. Though the levels of DCFH fluorescence were comparable at early time points in the two treatment sets, its quenching by DPI, catalase and MnTmPyP suggested the existence of a different repertoire of ROS. Both doses of NE also induced moderate levels of H(2)O(2) but with different kinetics. Sustained but intermittent generation of highly reactive species detectable by HPF was seen in both treatment sets but no peroxynitrite was generated in either conditions. Sustained generation of hydroxyl radicals with no appreciable differences were noticed in both treatment sets. Nevertheless, despite similar profile of ROS generation between the two conditions, extensive DNA damage as evident from the increase in 8-OH-dG content, formation of γ-H2AX and PARP cleavage was seen only in cells treated with the higher dose of NE. We therefore conclude that hypertrophic and apoptotic doses of NE generate distinct but comparable repertoire of ROS/RNS leading to two very distinct downstream responses.
format Online
Article
Text
id pubmed-4477046
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-44770462015-06-24 Norepinephrine-induced apoptotic and hypertrophic responses in H9c2 cardiac myoblasts are characterized by different repertoire of reactive oxygen species generation Thakur, Anita Alam, Md. Jahangir Ajayakumar, MR Ghaskadbi, Saroj Sharma, Manish Goswami, Shyamal K. Redox Biol Research Paper Despite recent advances, the role of ROS in mediating hypertrophic and apoptotic responses in cardiac myocytes elicited by norepinephrine (NE) is rather poorly understood. We demonstrate through our experiments that H9c2 cardiac myoblasts treated with 2 µM NE (hypertrophic dose) generate DCFH-DA positive ROS only for 2 h; while those treated with 100 µM NE (apoptotic dose) sustains generation for 48 h, followed by apoptosis. Though the levels of DCFH fluorescence were comparable at early time points in the two treatment sets, its quenching by DPI, catalase and MnTmPyP suggested the existence of a different repertoire of ROS. Both doses of NE also induced moderate levels of H(2)O(2) but with different kinetics. Sustained but intermittent generation of highly reactive species detectable by HPF was seen in both treatment sets but no peroxynitrite was generated in either conditions. Sustained generation of hydroxyl radicals with no appreciable differences were noticed in both treatment sets. Nevertheless, despite similar profile of ROS generation between the two conditions, extensive DNA damage as evident from the increase in 8-OH-dG content, formation of γ-H2AX and PARP cleavage was seen only in cells treated with the higher dose of NE. We therefore conclude that hypertrophic and apoptotic doses of NE generate distinct but comparable repertoire of ROS/RNS leading to two very distinct downstream responses. Elsevier 2015-05-29 /pmc/articles/PMC4477046/ /pubmed/26070033 http://dx.doi.org/10.1016/j.redox.2015.05.005 Text en © 2015 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Paper
Thakur, Anita
Alam, Md. Jahangir
Ajayakumar, MR
Ghaskadbi, Saroj
Sharma, Manish
Goswami, Shyamal K.
Norepinephrine-induced apoptotic and hypertrophic responses in H9c2 cardiac myoblasts are characterized by different repertoire of reactive oxygen species generation
title Norepinephrine-induced apoptotic and hypertrophic responses in H9c2 cardiac myoblasts are characterized by different repertoire of reactive oxygen species generation
title_full Norepinephrine-induced apoptotic and hypertrophic responses in H9c2 cardiac myoblasts are characterized by different repertoire of reactive oxygen species generation
title_fullStr Norepinephrine-induced apoptotic and hypertrophic responses in H9c2 cardiac myoblasts are characterized by different repertoire of reactive oxygen species generation
title_full_unstemmed Norepinephrine-induced apoptotic and hypertrophic responses in H9c2 cardiac myoblasts are characterized by different repertoire of reactive oxygen species generation
title_short Norepinephrine-induced apoptotic and hypertrophic responses in H9c2 cardiac myoblasts are characterized by different repertoire of reactive oxygen species generation
title_sort norepinephrine-induced apoptotic and hypertrophic responses in h9c2 cardiac myoblasts are characterized by different repertoire of reactive oxygen species generation
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477046/
https://www.ncbi.nlm.nih.gov/pubmed/26070033
http://dx.doi.org/10.1016/j.redox.2015.05.005
work_keys_str_mv AT thakuranita norepinephrineinducedapoptoticandhypertrophicresponsesinh9c2cardiacmyoblastsarecharacterizedbydifferentrepertoireofreactiveoxygenspeciesgeneration
AT alammdjahangir norepinephrineinducedapoptoticandhypertrophicresponsesinh9c2cardiacmyoblastsarecharacterizedbydifferentrepertoireofreactiveoxygenspeciesgeneration
AT ajayakumarmr norepinephrineinducedapoptoticandhypertrophicresponsesinh9c2cardiacmyoblastsarecharacterizedbydifferentrepertoireofreactiveoxygenspeciesgeneration
AT ghaskadbisaroj norepinephrineinducedapoptoticandhypertrophicresponsesinh9c2cardiacmyoblastsarecharacterizedbydifferentrepertoireofreactiveoxygenspeciesgeneration
AT sharmamanish norepinephrineinducedapoptoticandhypertrophicresponsesinh9c2cardiacmyoblastsarecharacterizedbydifferentrepertoireofreactiveoxygenspeciesgeneration
AT goswamishyamalk norepinephrineinducedapoptoticandhypertrophicresponsesinh9c2cardiacmyoblastsarecharacterizedbydifferentrepertoireofreactiveoxygenspeciesgeneration