Cargando…
A predictive machine learning approach for microstructure optimization and materials design
This paper addresses an important materials engineering question: How can one identify the complete space (or as much of it as possible) of microstructures that are theoretically predicted to yield the desired combination of properties demanded by a selected application? We present a problem involvi...
Autores principales: | Liu, Ruoqian, Kumar, Abhishek, Chen, Zhengzhang, Agrawal, Ankit, Sundararaghavan, Veera, Choudhary, Alok |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477370/ https://www.ncbi.nlm.nih.gov/pubmed/26100717 http://dx.doi.org/10.1038/srep11551 |
Ejemplares similares
-
Machine learning approaches for elastic localization linkages in high-contrast composite materials
por: Liu, Ruoqian, et al.
Publicado: (2015) -
Generative Adversarial Networks and Mixture Density Networks-Based Inverse Modeling for Microstructural Materials Design
por: Mao, Yuwei, et al.
Publicado: (2022) -
Machine‐Learning Microstructure for Inverse Material Design
por: Pei, Zongrui, et al.
Publicado: (2021) -
Generative and discriminative training of Boltzmann machine through quantum annealing
por: Srivastava, Siddhartha, et al.
Publicado: (2023) -
Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning
por: Jha, Dipendra, et al.
Publicado: (2019)