Cargando…

Multinational development and validation of an early prediction model for delirium in ICU patients

RATIONALE: Delirium incidence in intensive care unit (ICU) patients is high and associated with poor outcome. Identification of high-risk patients may facilitate its prevention. PURPOSE: To develop and validate a model based on data available at ICU admission to predict delirium development during a...

Descripción completa

Detalles Bibliográficos
Autores principales: Wassenaar, A., van den Boogaard, M., van Achterberg, T., Slooter, A. J. C., Kuiper, M. A., Hoogendoorn, M. E., Simons, K. S., Maseda, E., Pinto, N., Jones, C., Luetz, A., Schandl, A., Verbrugghe, W., Aitken, L. M., van Haren, F. M. P., Donders, A. R. T., Schoonhoven, L., Pickkers, P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477716/
https://www.ncbi.nlm.nih.gov/pubmed/25894620
http://dx.doi.org/10.1007/s00134-015-3777-2
_version_ 1782377797485854720
author Wassenaar, A.
van den Boogaard, M.
van Achterberg, T.
Slooter, A. J. C.
Kuiper, M. A.
Hoogendoorn, M. E.
Simons, K. S.
Maseda, E.
Pinto, N.
Jones, C.
Luetz, A.
Schandl, A.
Verbrugghe, W.
Aitken, L. M.
van Haren, F. M. P.
Donders, A. R. T.
Schoonhoven, L.
Pickkers, P.
author_facet Wassenaar, A.
van den Boogaard, M.
van Achterberg, T.
Slooter, A. J. C.
Kuiper, M. A.
Hoogendoorn, M. E.
Simons, K. S.
Maseda, E.
Pinto, N.
Jones, C.
Luetz, A.
Schandl, A.
Verbrugghe, W.
Aitken, L. M.
van Haren, F. M. P.
Donders, A. R. T.
Schoonhoven, L.
Pickkers, P.
author_sort Wassenaar, A.
collection PubMed
description RATIONALE: Delirium incidence in intensive care unit (ICU) patients is high and associated with poor outcome. Identification of high-risk patients may facilitate its prevention. PURPOSE: To develop and validate a model based on data available at ICU admission to predict delirium development during a patient’s complete ICU stay and to determine the predictive value of this model in relation to the time of delirium development. METHODS: Prospective cohort study in 13 ICUs from seven countries. Multiple logistic regression analysis was used to develop the early prediction (E-PRE-DELIRIC) model on data of the first two-thirds and validated on data of the last one-third of the patients from every participating ICU. RESULTS: In total, 2914 patients were included. Delirium incidence was 23.6 %. The E-PRE-DELIRIC model consists of nine predictors assessed at ICU admission: age, history of cognitive impairment, history of alcohol abuse, blood urea nitrogen, admission category, urgent admission, mean arterial blood pressure, use of corticosteroids, and respiratory failure. The area under the receiver operating characteristic curve (AUROC) was 0.76 [95 % confidence interval (CI) 0.73–0.77] in the development dataset and 0.75 (95 % CI 0.71–0.79) in the validation dataset. The model was well calibrated. AUROC increased from 0.70 (95 % CI 0.67–0.74), for delirium that developed <2 days, to 0.81 (95 % CI 0.78–0.84), for delirium that developed >6 days. CONCLUSION: Patients’ delirium risk for the complete ICU length of stay can be predicted at admission using the E-PRE-DELIRIC model, allowing early preventive interventions aimed to reduce incidence and severity of ICU delirium. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00134-015-3777-2) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-4477716
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-44777162015-06-24 Multinational development and validation of an early prediction model for delirium in ICU patients Wassenaar, A. van den Boogaard, M. van Achterberg, T. Slooter, A. J. C. Kuiper, M. A. Hoogendoorn, M. E. Simons, K. S. Maseda, E. Pinto, N. Jones, C. Luetz, A. Schandl, A. Verbrugghe, W. Aitken, L. M. van Haren, F. M. P. Donders, A. R. T. Schoonhoven, L. Pickkers, P. Intensive Care Med Original RATIONALE: Delirium incidence in intensive care unit (ICU) patients is high and associated with poor outcome. Identification of high-risk patients may facilitate its prevention. PURPOSE: To develop and validate a model based on data available at ICU admission to predict delirium development during a patient’s complete ICU stay and to determine the predictive value of this model in relation to the time of delirium development. METHODS: Prospective cohort study in 13 ICUs from seven countries. Multiple logistic regression analysis was used to develop the early prediction (E-PRE-DELIRIC) model on data of the first two-thirds and validated on data of the last one-third of the patients from every participating ICU. RESULTS: In total, 2914 patients were included. Delirium incidence was 23.6 %. The E-PRE-DELIRIC model consists of nine predictors assessed at ICU admission: age, history of cognitive impairment, history of alcohol abuse, blood urea nitrogen, admission category, urgent admission, mean arterial blood pressure, use of corticosteroids, and respiratory failure. The area under the receiver operating characteristic curve (AUROC) was 0.76 [95 % confidence interval (CI) 0.73–0.77] in the development dataset and 0.75 (95 % CI 0.71–0.79) in the validation dataset. The model was well calibrated. AUROC increased from 0.70 (95 % CI 0.67–0.74), for delirium that developed <2 days, to 0.81 (95 % CI 0.78–0.84), for delirium that developed >6 days. CONCLUSION: Patients’ delirium risk for the complete ICU length of stay can be predicted at admission using the E-PRE-DELIRIC model, allowing early preventive interventions aimed to reduce incidence and severity of ICU delirium. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00134-015-3777-2) contains supplementary material, which is available to authorized users. Springer Berlin Heidelberg 2015-04-18 2015 /pmc/articles/PMC4477716/ /pubmed/25894620 http://dx.doi.org/10.1007/s00134-015-3777-2 Text en © The Author(s) 2015 Open AccessThis article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Original
Wassenaar, A.
van den Boogaard, M.
van Achterberg, T.
Slooter, A. J. C.
Kuiper, M. A.
Hoogendoorn, M. E.
Simons, K. S.
Maseda, E.
Pinto, N.
Jones, C.
Luetz, A.
Schandl, A.
Verbrugghe, W.
Aitken, L. M.
van Haren, F. M. P.
Donders, A. R. T.
Schoonhoven, L.
Pickkers, P.
Multinational development and validation of an early prediction model for delirium in ICU patients
title Multinational development and validation of an early prediction model for delirium in ICU patients
title_full Multinational development and validation of an early prediction model for delirium in ICU patients
title_fullStr Multinational development and validation of an early prediction model for delirium in ICU patients
title_full_unstemmed Multinational development and validation of an early prediction model for delirium in ICU patients
title_short Multinational development and validation of an early prediction model for delirium in ICU patients
title_sort multinational development and validation of an early prediction model for delirium in icu patients
topic Original
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477716/
https://www.ncbi.nlm.nih.gov/pubmed/25894620
http://dx.doi.org/10.1007/s00134-015-3777-2
work_keys_str_mv AT wassenaara multinationaldevelopmentandvalidationofanearlypredictionmodelfordeliriuminicupatients
AT vandenboogaardm multinationaldevelopmentandvalidationofanearlypredictionmodelfordeliriuminicupatients
AT vanachterbergt multinationaldevelopmentandvalidationofanearlypredictionmodelfordeliriuminicupatients
AT slooterajc multinationaldevelopmentandvalidationofanearlypredictionmodelfordeliriuminicupatients
AT kuiperma multinationaldevelopmentandvalidationofanearlypredictionmodelfordeliriuminicupatients
AT hoogendoornme multinationaldevelopmentandvalidationofanearlypredictionmodelfordeliriuminicupatients
AT simonsks multinationaldevelopmentandvalidationofanearlypredictionmodelfordeliriuminicupatients
AT masedae multinationaldevelopmentandvalidationofanearlypredictionmodelfordeliriuminicupatients
AT pinton multinationaldevelopmentandvalidationofanearlypredictionmodelfordeliriuminicupatients
AT jonesc multinationaldevelopmentandvalidationofanearlypredictionmodelfordeliriuminicupatients
AT luetza multinationaldevelopmentandvalidationofanearlypredictionmodelfordeliriuminicupatients
AT schandla multinationaldevelopmentandvalidationofanearlypredictionmodelfordeliriuminicupatients
AT verbrugghew multinationaldevelopmentandvalidationofanearlypredictionmodelfordeliriuminicupatients
AT aitkenlm multinationaldevelopmentandvalidationofanearlypredictionmodelfordeliriuminicupatients
AT vanharenfmp multinationaldevelopmentandvalidationofanearlypredictionmodelfordeliriuminicupatients
AT dondersart multinationaldevelopmentandvalidationofanearlypredictionmodelfordeliriuminicupatients
AT schoonhovenl multinationaldevelopmentandvalidationofanearlypredictionmodelfordeliriuminicupatients
AT pickkersp multinationaldevelopmentandvalidationofanearlypredictionmodelfordeliriuminicupatients