Cargando…
Multinational development and validation of an early prediction model for delirium in ICU patients
RATIONALE: Delirium incidence in intensive care unit (ICU) patients is high and associated with poor outcome. Identification of high-risk patients may facilitate its prevention. PURPOSE: To develop and validate a model based on data available at ICU admission to predict delirium development during a...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477716/ https://www.ncbi.nlm.nih.gov/pubmed/25894620 http://dx.doi.org/10.1007/s00134-015-3777-2 |
_version_ | 1782377797485854720 |
---|---|
author | Wassenaar, A. van den Boogaard, M. van Achterberg, T. Slooter, A. J. C. Kuiper, M. A. Hoogendoorn, M. E. Simons, K. S. Maseda, E. Pinto, N. Jones, C. Luetz, A. Schandl, A. Verbrugghe, W. Aitken, L. M. van Haren, F. M. P. Donders, A. R. T. Schoonhoven, L. Pickkers, P. |
author_facet | Wassenaar, A. van den Boogaard, M. van Achterberg, T. Slooter, A. J. C. Kuiper, M. A. Hoogendoorn, M. E. Simons, K. S. Maseda, E. Pinto, N. Jones, C. Luetz, A. Schandl, A. Verbrugghe, W. Aitken, L. M. van Haren, F. M. P. Donders, A. R. T. Schoonhoven, L. Pickkers, P. |
author_sort | Wassenaar, A. |
collection | PubMed |
description | RATIONALE: Delirium incidence in intensive care unit (ICU) patients is high and associated with poor outcome. Identification of high-risk patients may facilitate its prevention. PURPOSE: To develop and validate a model based on data available at ICU admission to predict delirium development during a patient’s complete ICU stay and to determine the predictive value of this model in relation to the time of delirium development. METHODS: Prospective cohort study in 13 ICUs from seven countries. Multiple logistic regression analysis was used to develop the early prediction (E-PRE-DELIRIC) model on data of the first two-thirds and validated on data of the last one-third of the patients from every participating ICU. RESULTS: In total, 2914 patients were included. Delirium incidence was 23.6 %. The E-PRE-DELIRIC model consists of nine predictors assessed at ICU admission: age, history of cognitive impairment, history of alcohol abuse, blood urea nitrogen, admission category, urgent admission, mean arterial blood pressure, use of corticosteroids, and respiratory failure. The area under the receiver operating characteristic curve (AUROC) was 0.76 [95 % confidence interval (CI) 0.73–0.77] in the development dataset and 0.75 (95 % CI 0.71–0.79) in the validation dataset. The model was well calibrated. AUROC increased from 0.70 (95 % CI 0.67–0.74), for delirium that developed <2 days, to 0.81 (95 % CI 0.78–0.84), for delirium that developed >6 days. CONCLUSION: Patients’ delirium risk for the complete ICU length of stay can be predicted at admission using the E-PRE-DELIRIC model, allowing early preventive interventions aimed to reduce incidence and severity of ICU delirium. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00134-015-3777-2) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4477716 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-44777162015-06-24 Multinational development and validation of an early prediction model for delirium in ICU patients Wassenaar, A. van den Boogaard, M. van Achterberg, T. Slooter, A. J. C. Kuiper, M. A. Hoogendoorn, M. E. Simons, K. S. Maseda, E. Pinto, N. Jones, C. Luetz, A. Schandl, A. Verbrugghe, W. Aitken, L. M. van Haren, F. M. P. Donders, A. R. T. Schoonhoven, L. Pickkers, P. Intensive Care Med Original RATIONALE: Delirium incidence in intensive care unit (ICU) patients is high and associated with poor outcome. Identification of high-risk patients may facilitate its prevention. PURPOSE: To develop and validate a model based on data available at ICU admission to predict delirium development during a patient’s complete ICU stay and to determine the predictive value of this model in relation to the time of delirium development. METHODS: Prospective cohort study in 13 ICUs from seven countries. Multiple logistic regression analysis was used to develop the early prediction (E-PRE-DELIRIC) model on data of the first two-thirds and validated on data of the last one-third of the patients from every participating ICU. RESULTS: In total, 2914 patients were included. Delirium incidence was 23.6 %. The E-PRE-DELIRIC model consists of nine predictors assessed at ICU admission: age, history of cognitive impairment, history of alcohol abuse, blood urea nitrogen, admission category, urgent admission, mean arterial blood pressure, use of corticosteroids, and respiratory failure. The area under the receiver operating characteristic curve (AUROC) was 0.76 [95 % confidence interval (CI) 0.73–0.77] in the development dataset and 0.75 (95 % CI 0.71–0.79) in the validation dataset. The model was well calibrated. AUROC increased from 0.70 (95 % CI 0.67–0.74), for delirium that developed <2 days, to 0.81 (95 % CI 0.78–0.84), for delirium that developed >6 days. CONCLUSION: Patients’ delirium risk for the complete ICU length of stay can be predicted at admission using the E-PRE-DELIRIC model, allowing early preventive interventions aimed to reduce incidence and severity of ICU delirium. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00134-015-3777-2) contains supplementary material, which is available to authorized users. Springer Berlin Heidelberg 2015-04-18 2015 /pmc/articles/PMC4477716/ /pubmed/25894620 http://dx.doi.org/10.1007/s00134-015-3777-2 Text en © The Author(s) 2015 Open AccessThis article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Original Wassenaar, A. van den Boogaard, M. van Achterberg, T. Slooter, A. J. C. Kuiper, M. A. Hoogendoorn, M. E. Simons, K. S. Maseda, E. Pinto, N. Jones, C. Luetz, A. Schandl, A. Verbrugghe, W. Aitken, L. M. van Haren, F. M. P. Donders, A. R. T. Schoonhoven, L. Pickkers, P. Multinational development and validation of an early prediction model for delirium in ICU patients |
title | Multinational development and validation of an early prediction model for delirium in ICU patients |
title_full | Multinational development and validation of an early prediction model for delirium in ICU patients |
title_fullStr | Multinational development and validation of an early prediction model for delirium in ICU patients |
title_full_unstemmed | Multinational development and validation of an early prediction model for delirium in ICU patients |
title_short | Multinational development and validation of an early prediction model for delirium in ICU patients |
title_sort | multinational development and validation of an early prediction model for delirium in icu patients |
topic | Original |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477716/ https://www.ncbi.nlm.nih.gov/pubmed/25894620 http://dx.doi.org/10.1007/s00134-015-3777-2 |
work_keys_str_mv | AT wassenaara multinationaldevelopmentandvalidationofanearlypredictionmodelfordeliriuminicupatients AT vandenboogaardm multinationaldevelopmentandvalidationofanearlypredictionmodelfordeliriuminicupatients AT vanachterbergt multinationaldevelopmentandvalidationofanearlypredictionmodelfordeliriuminicupatients AT slooterajc multinationaldevelopmentandvalidationofanearlypredictionmodelfordeliriuminicupatients AT kuiperma multinationaldevelopmentandvalidationofanearlypredictionmodelfordeliriuminicupatients AT hoogendoornme multinationaldevelopmentandvalidationofanearlypredictionmodelfordeliriuminicupatients AT simonsks multinationaldevelopmentandvalidationofanearlypredictionmodelfordeliriuminicupatients AT masedae multinationaldevelopmentandvalidationofanearlypredictionmodelfordeliriuminicupatients AT pinton multinationaldevelopmentandvalidationofanearlypredictionmodelfordeliriuminicupatients AT jonesc multinationaldevelopmentandvalidationofanearlypredictionmodelfordeliriuminicupatients AT luetza multinationaldevelopmentandvalidationofanearlypredictionmodelfordeliriuminicupatients AT schandla multinationaldevelopmentandvalidationofanearlypredictionmodelfordeliriuminicupatients AT verbrugghew multinationaldevelopmentandvalidationofanearlypredictionmodelfordeliriuminicupatients AT aitkenlm multinationaldevelopmentandvalidationofanearlypredictionmodelfordeliriuminicupatients AT vanharenfmp multinationaldevelopmentandvalidationofanearlypredictionmodelfordeliriuminicupatients AT dondersart multinationaldevelopmentandvalidationofanearlypredictionmodelfordeliriuminicupatients AT schoonhovenl multinationaldevelopmentandvalidationofanearlypredictionmodelfordeliriuminicupatients AT pickkersp multinationaldevelopmentandvalidationofanearlypredictionmodelfordeliriuminicupatients |