Cargando…
Transformer Incipient Fault Prediction Using Combined Artificial Neural Network and Various Particle Swarm Optimisation Techniques
It is important to predict the incipient fault in transformer oil accurately so that the maintenance of transformer oil can be performed correctly, reducing the cost of maintenance and minimise the error. Dissolved gas analysis (DGA) has been widely used to predict the incipient fault in power trans...
Autores principales: | Illias, Hazlee Azil, Chai, Xin Rui, Abu Bakar, Ab Halim, Mokhlis, Hazlie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4478012/ https://www.ncbi.nlm.nih.gov/pubmed/26103634 http://dx.doi.org/10.1371/journal.pone.0129363 |
Ejemplares similares
-
Classification of abnormal location in medium voltage switchgears using hybrid gravitational search algorithm-artificial intelligence
por: Illias, Hazlee Azil, et al.
Publicado: (2021) -
Identification of transformer fault based on dissolved gas analysis using hybrid support vector machine-modified evolutionary particle swarm optimisation
por: Illias, Hazlee Azil, et al.
Publicado: (2018) -
Classification of Partial Discharge Measured under Different Levels of Noise Contamination
por: Jee Keen Raymond, Wong, et al.
Publicado: (2017) -
Optimized artificial neural network to improve the accuracy of estimated fault impedances and distances for underground distribution system
por: Naidu, Kanendra, et al.
Publicado: (2020) -
Partial Discharge in Nanofluid Insulation Material with Conductive and Semiconductive Nanoparticles
por: Makmud, Mohamad Zul Hilmey, et al.
Publicado: (2019)