Cargando…

Prediction of Eggshell Ultrastructure via Some Non-destructive and Destructive Measurements in Fayoumi Breed

Possibilities of predicting eggshell ultrastructure from direct non-destructive and destructive measurements were examined using 120 Fayoumi eggs collected from the flock at 45 weeks of age. The non-destructive measurements included weight, length and width of the egg. The destructive measurements w...

Descripción completa

Detalles Bibliográficos
Autores principales: Radwan, Lamiaa M., Galal, A., Shemeis, A. R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Asian-Australasian Association of Animal Production Societies (AAAP) and Korean Society of Animal Science and Technology (KSAST) 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4478509/
https://www.ncbi.nlm.nih.gov/pubmed/26104404
http://dx.doi.org/10.5713/ajas.14.0847
Descripción
Sumario:Possibilities of predicting eggshell ultrastructure from direct non-destructive and destructive measurements were examined using 120 Fayoumi eggs collected from the flock at 45 weeks of age. The non-destructive measurements included weight, length and width of the egg. The destructive measurements were breaking strength and shell thickness. The eggshell ultrastructure traits involved the total thickness of eggshell layer, thickness of palisade layer, cone layer and total score. Prediction of total thickness of eggshell layer based on non-destructive measurements individually or simultaneously was not possible (R(2) = 0.01 to 0.16). The destructive measurements were far more accurate than the non-destructive in predicting total thickness of eggshell layer. Prediction based on breaking strength alone was more accurate (R(2) = 0.85) than that based on shell thickness alone (R(2) = 0.72). Adding shell thickness to breaking strength (the best predictor) increased the accuracy of prediction by 5%. The results obtained indicated that both non-destructive and destructive measurements were not useful in predicting the cone layer (R(2) not exceeded 18%). The maximum accuracy of prediction of total score (R(2) = 0.48) was obtained from prediction based on breaking strength alone. Combining shell thicknesses and breaking strength into one equation was no help in improving the accuracy of prediction.