Cargando…
Effects of Genic Base Composition on Growth Rate in G+C-rich Genomes
The source and significance of the wide variation in the genomic base composition of bacteria have been a matter of continued debate. Although the variation was originally attributed to a strictly neutral process, i.e., species-specific differences in mutational patterns, recent genomic comparisons...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Genetics Society of America
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4478552/ https://www.ncbi.nlm.nih.gov/pubmed/25897009 http://dx.doi.org/10.1534/g3.115.016824 |
_version_ | 1782377911499620352 |
---|---|
author | Kelkar, Yogeshwar D. Phillips, Daniel S. Ochman, Howard |
author_facet | Kelkar, Yogeshwar D. Phillips, Daniel S. Ochman, Howard |
author_sort | Kelkar, Yogeshwar D. |
collection | PubMed |
description | The source and significance of the wide variation in the genomic base composition of bacteria have been a matter of continued debate. Although the variation was originally attributed to a strictly neutral process, i.e., species-specific differences in mutational patterns, recent genomic comparisons have shown that bacteria with G+C-rich genomes experience a mutational bias toward A+T. This difference between the mutational input to a genome and its overall base composition suggests the action of natural selection. Here, we examine if selection acts on G+C contents in Caulobacter crescentus and Pseudomonas aeruginosa, which both have very G+C-rich genomes, by testing whether the expression of gene variants that differ only in their base compositions at synonymous sites affects cellular growth rates. In C. crescentus, expression of the more A+T-rich gene variants decelerated growth, indicating that selection on genic base composition is, in part, responsible for the high G+C content of this genome. In contrast, no comparable effect was observed in P. aeruginosa, which has similarly high genome G+C contents. Selection for increased genic G+C-contents in C. crescentus acts independently of the species-specific codon usage pattern and represents an additional selective force operating in bacterial genomes. |
format | Online Article Text |
id | pubmed-4478552 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Genetics Society of America |
record_format | MEDLINE/PubMed |
spelling | pubmed-44785522015-06-29 Effects of Genic Base Composition on Growth Rate in G+C-rich Genomes Kelkar, Yogeshwar D. Phillips, Daniel S. Ochman, Howard G3 (Bethesda) Investigations The source and significance of the wide variation in the genomic base composition of bacteria have been a matter of continued debate. Although the variation was originally attributed to a strictly neutral process, i.e., species-specific differences in mutational patterns, recent genomic comparisons have shown that bacteria with G+C-rich genomes experience a mutational bias toward A+T. This difference between the mutational input to a genome and its overall base composition suggests the action of natural selection. Here, we examine if selection acts on G+C contents in Caulobacter crescentus and Pseudomonas aeruginosa, which both have very G+C-rich genomes, by testing whether the expression of gene variants that differ only in their base compositions at synonymous sites affects cellular growth rates. In C. crescentus, expression of the more A+T-rich gene variants decelerated growth, indicating that selection on genic base composition is, in part, responsible for the high G+C content of this genome. In contrast, no comparable effect was observed in P. aeruginosa, which has similarly high genome G+C contents. Selection for increased genic G+C-contents in C. crescentus acts independently of the species-specific codon usage pattern and represents an additional selective force operating in bacterial genomes. Genetics Society of America 2015-04-20 /pmc/articles/PMC4478552/ /pubmed/25897009 http://dx.doi.org/10.1534/g3.115.016824 Text en Copyright © 2015 Kelkar et al. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution Unported License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Investigations Kelkar, Yogeshwar D. Phillips, Daniel S. Ochman, Howard Effects of Genic Base Composition on Growth Rate in G+C-rich Genomes |
title | Effects of Genic Base Composition on Growth Rate in G+C-rich Genomes |
title_full | Effects of Genic Base Composition on Growth Rate in G+C-rich Genomes |
title_fullStr | Effects of Genic Base Composition on Growth Rate in G+C-rich Genomes |
title_full_unstemmed | Effects of Genic Base Composition on Growth Rate in G+C-rich Genomes |
title_short | Effects of Genic Base Composition on Growth Rate in G+C-rich Genomes |
title_sort | effects of genic base composition on growth rate in g+c-rich genomes |
topic | Investigations |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4478552/ https://www.ncbi.nlm.nih.gov/pubmed/25897009 http://dx.doi.org/10.1534/g3.115.016824 |
work_keys_str_mv | AT kelkaryogeshward effectsofgenicbasecompositionongrowthrateingcrichgenomes AT phillipsdaniels effectsofgenicbasecompositionongrowthrateingcrichgenomes AT ochmanhoward effectsofgenicbasecompositionongrowthrateingcrichgenomes |