Cargando…
QSAR DataBank repository: open and linked qualitative and quantitative structure–activity relationship models
BACKGROUND: Structure–activity relationship models have been used to gain insight into chemical and physical processes in biomedicine, toxicology, biotechnology, etc. for almost a century. They have been recognized as valuable tools in decision support workflows for qualitative and quantitative pred...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4479250/ https://www.ncbi.nlm.nih.gov/pubmed/26110025 http://dx.doi.org/10.1186/s13321-015-0082-6 |
Sumario: | BACKGROUND: Structure–activity relationship models have been used to gain insight into chemical and physical processes in biomedicine, toxicology, biotechnology, etc. for almost a century. They have been recognized as valuable tools in decision support workflows for qualitative and quantitative predictions. The main obstacle preventing broader adoption of quantitative structure–activity relationships [(Q)SARs] is that published models are still relatively difficult to discover, retrieve and redeploy in a modern computer-oriented environment. This publication describes a digital repository that makes in silico (Q)SAR-type descriptive and predictive models archivable, citable and usable in a novel way for most common research and applied science purposes. DESCRIPTION: The QSAR DataBank (QsarDB) repository aims to make the processes and outcomes of in silico modelling work transparent, reproducible and accessible. Briefly, the models are represented in the QsarDB data format and stored in a content-aware repository (a.k.a. smart repository). Content awareness has two dimensions. First, models are organized into collections and then into collection hierarchies based on their metadata. Second, the repository is not only an environment for browsing and downloading models (the QDB archive) but also offers integrated services, such as model analysis and visualization and prediction making. CONCLUSIONS: The QsarDB repository unlocks the potential of descriptive and predictive in silico (Q)SAR-type models by allowing new and different types of collaboration between model developers and model users. The key enabling factor is the representation of (Q)SAR models in the QsarDB data format, which makes it easy to preserve and share all relevant data, information and knowledge. Model developers can become more productive by effectively reusing prior art. Model users can make more confident decisions by relying on supporting information that is larger and more diverse than before. Furthermore, the smart repository automates most of the mundane work (e.g., collecting, systematizing, and reporting data), thereby reducing the time to decision. GRAPHICAL ABSTRACT: [Image: see text] |
---|