Cargando…

Comparative Metabolomic Profiling of Hepatocellular Carcinoma Cells Treated with Sorafenib Monotherapy vs. Sorafenib-Everolimus Combination Therapy

BACKGROUND: Sorafenib-everolimus combination therapy may be more effective than sorafenib monotherapy for hepatocellular carcinoma (HCC). To better understand this effect, we comparatively profiled the metabolite composition of HepG2 cells treated with sorafenib, everolimus, and sorafenib-everolimus...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Jian-feng, Lu, Juan, Wang, Xiao-zhong, Guo, Wu-hua, Zhang, Ji-xiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Scientific Literature, Inc. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4479262/
https://www.ncbi.nlm.nih.gov/pubmed/26092946
http://dx.doi.org/10.12659/MSM.894669
Descripción
Sumario:BACKGROUND: Sorafenib-everolimus combination therapy may be more effective than sorafenib monotherapy for hepatocellular carcinoma (HCC). To better understand this effect, we comparatively profiled the metabolite composition of HepG2 cells treated with sorafenib, everolimus, and sorafenib-everolimus combination therapy. MATERIAL/METHODS: A 2D HRMAS (1)H-NMR metabolomic approach was applied to identify the key differential metabolites in 3 experimental groups: sorafenib (5 μM), everolimus (5 μM), and combination therapy (5 μM sorafenib +5 μM everolimus). MetaboAnalyst 3.0 was used to perform pathway analysis. RESULTS: All OPLS-DA models displayed good separation between experimental groups, high-quality goodness of fit (R2), and high-quality goodness of predication (Q2). Sorafenib and everolimus have differential effects with respect to amino acid, methane, pyruvate, pyrimidine, aminoacyl-tRNA biosynthesis, and glycerophospholipid metabolism. The addition of everolimus to sorafenib resulted in differential effects with respect to pyruvate, amino acid, methane, glyoxylate and dicarboxylate, glycolysis or gluconeogenesis, glycerophospholipid, and purine metabolism. CONCLUSIONS: Sorafenib and everolimus have differential effects on HepG2 cells. Sorafenib preferentially affects glycerophospholipid and purine metabolism, while the addition of everolimus preferentially affects pyruvate, amino acid, and glucose metabolism. This phenomenon may explain (in part) the synergistic effects of sorafenib-everolimus combination therapy observed in vivo.