Cargando…
Use of Approximate Bayesian Computation to Assess and Fit Models of Mycobacterium leprae to Predict Outcomes of the Brazilian Control Program
Hansen’s disease (leprosy) elimination has proven difficult in several countries, including Brazil, and there is a need for a mathematical model that can predict control program efficacy. This study applied the Approximate Bayesian Computation algorithm to fit 6 different proposed models to each of...
Autores principales: | Smith, Rebecca Lee, Gröhn, Yrjö Tapio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4479607/ https://www.ncbi.nlm.nih.gov/pubmed/26107951 http://dx.doi.org/10.1371/journal.pone.0129535 |
Ejemplares similares
-
Invasion and transmission of Salmonella Kentucky in an adult dairy herd using approximate Bayesian computation
por: Lu, Zhao, et al.
Publicado: (2013) -
Lepra Bubalorum, a Potential Reservoir of Mycobacterium leprae
por: Faber, William R., et al.
Publicado: (2021) -
Approximate Bayesian Computation
por: Sunnåker, Mikael, et al.
Publicado: (2013) -
Mycobacterium leprae in bone marrow
por: de Oliveira, Leonardo Rodrigues, et al.
Publicado: (2014) -
Sensitivity of Mycobacterium leprae to Telacebec
por: Lahiri, Ramanuj, et al.
Publicado: (2022)