Cargando…
Machine Learning of Parameters for Accurate Semiempirical Quantum Chemical Calculations
[Image: see text] We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that...
Autores principales: | Dral, Pavlo O., von Lilienfeld, O. Anatole, Thiel, Walter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2015
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4479612/ https://www.ncbi.nlm.nih.gov/pubmed/26146493 http://dx.doi.org/10.1021/acs.jctc.5b00141 |
Ejemplares similares
-
Semiempirical Quantum-Chemical Methods with Orthogonalization
and Dispersion Corrections
por: Dral, Pavlo O., et al.
Publicado: (2019) -
Semiempirical Quantum-Chemical Orthogonalization-Corrected
Methods: Theory, Implementation, and Parameters
por: Dral, Pavlo O., et al.
Publicado: (2016) -
Semiempirical Quantum-Chemical Orthogonalization-Corrected
Methods: Benchmarks for Ground-State Properties
por: Dral, Pavlo O., et al.
Publicado: (2016) -
Quantum chemistry structures and properties of 134 kilo molecules
por: Ramakrishnan, Raghunathan, et al.
Publicado: (2014) -
Nonadiabatic Excited-State Dynamics with Machine Learning
por: Dral, Pavlo O., et al.
Publicado: (2018)