Cargando…

Registered report: BET bromodomain inhibition as a therapeutic strategy to target c-Myc

The Reproducibility Project: Cancer Biology seeks to address growing concerns about reproducibility in scientific research by replicating selected results from a substantial number of high-profile papers in the field of cancer biology published between 2010 and 2012. This Registered report describes...

Descripción completa

Detalles Bibliográficos
Autores principales: Kandela, Irawati, Jin, Hyun Yong, Owen, Katherine
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4480271/
https://www.ncbi.nlm.nih.gov/pubmed/26111384
http://dx.doi.org/10.7554/eLife.07072
Descripción
Sumario:The Reproducibility Project: Cancer Biology seeks to address growing concerns about reproducibility in scientific research by replicating selected results from a substantial number of high-profile papers in the field of cancer biology published between 2010 and 2012. This Registered report describes the proposed replication plan of key experiments from ‘BET bromodomain inhibition as a therapeutic strategy to target c-Myc’ by Delmore and colleagues, published in Cell in 2011 (Delmore et al., 2011). The key experiments that will be replicated are those reported in Figures 3B and 7C-E. Delmore and colleagues demonstrated that treatment with JQ1, a small molecular inhibitor targeting BET bromodomains, resulted in the transcriptional down-regulation of the c-Myc oncogene in vitro (Figure 3B; Delmore et al., 2011). To assess the therapeutic efficacy of JQ1 in vivo, mice bearing multiple myeloma (MM) lesions were treated with JQ1 before evaluation for tumor burden and overall survival. JQ1 treatment significantly reduced disease burden and increased survival time (Figure 7C-E; Delmore et al., 2011). The Reproducibility Project: Cancer Biology is a collaboration between the Center for Open Science and Science Exchange and the results of the replications will be published in eLife. DOI: http://dx.doi.org/10.7554/eLife.07072.001