Cargando…
NF-κB-mediated miR-124 suppresses metastasis of non-small-cell lung cancer by targeting MYO10
Recently, dysregulation of microRNAs plays a critical role in cancer metastasis. Here, an in vivo selection approach was used to generate highly aggressive NSCLC sub-cell lines followed by comparing the microRNAs expression using microarrays. miR-124 was notably deregulated in both highly invasive s...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4480748/ https://www.ncbi.nlm.nih.gov/pubmed/25749519 |
Sumario: | Recently, dysregulation of microRNAs plays a critical role in cancer metastasis. Here, an in vivo selection approach was used to generate highly aggressive NSCLC sub-cell lines followed by comparing the microRNAs expression using microarrays. miR-124 was notably deregulated in both highly invasive sub-cell lines and node-positive NSCLC specimens. Over-expression of miR-124 robustly attenuated migration and metastatic ability of the aggressive cells. MYO10 was subsequently identified as a novel functional downstream target of miR-124, and was up-regulated in node-positive NSCLC tissues. Knockdown of MYO10 inhibited cell migration, whereas forced MYO10 expression markedly rescued miR-124-mediated suppression of cell metastasis. Additionally, we found an activated NF-κB-centered inflammatory loop in the highly aggressive cells leading to down-regulation of miR-124. These results suggest that NF-κB-regulated miR-124 targets MYO10, inhibits cell invasion and metastasis, and is down-regulated in node-positive NSCLC. |
---|