Cargando…
A Review on Automatic Mammographic Density and Parenchymal Segmentation
Breast cancer is the most frequently diagnosed cancer in women. However, the exact cause(s) of breast cancer still remains unknown. Early detection, precise identification of women at risk, and application of appropriate disease prevention measures are by far the most effective way to tackle breast...
Autores principales: | He, Wenda, Juette, Arne, Denton, Erika R. E., Oliver, Arnau, Martí, Robert, Zwiggelaar, Reyer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481086/ https://www.ncbi.nlm.nih.gov/pubmed/26171249 http://dx.doi.org/10.1155/2015/276217 |
Ejemplares similares
-
Comparative Study on Local Binary Patterns for Mammographic Density and Risk Scoring †
por: George, Minu, et al.
Publicado: (2019) -
Mammographic Parenchymal Patterns in Asymptomatic Women
por: Akande, Halimat J., et al.
Publicado: (2017) -
Analysis of background parenchymal echogenicity on breast ultrasound: Correlation with mammographic breast density and background parenchymal enhancement on magnetic resonance imaging
por: Ko, Kyung Hee, et al.
Publicado: (2017) -
Bias and the association of mammographic parenchymal patterns with breast cancer.
por: Boyd, N. F., et al.
Publicado: (1982) -
Classification of micro-calcification in mammograms using scalable linear Fisher discriminant analysis
por: Suhail, Zobia, et al.
Publicado: (2018)