Cargando…
Spider wrapping silk fibre architecture arising from its modular soluble protein precursor
Spiders store spidroins in their silk glands as high concentration aqueous solutions, spinning these dopes into fibres with outstanding mechanical properties. Aciniform (or wrapping) silk is the toughest spider silk and is devoid of the short amino acid sequence motifs characteristic of the other sp...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481645/ https://www.ncbi.nlm.nih.gov/pubmed/26112753 http://dx.doi.org/10.1038/srep11502 |
_version_ | 1782378301626515456 |
---|---|
author | Tremblay, Marie-Laurence Xu, Lingling Lefèvre, Thierry Sarker, Muzaddid Orrell, Kathleen E. Leclerc, Jérémie Meng, Qing Pézolet, Michel Auger, Michèle Liu, Xiang-Qin Rainey, Jan K. |
author_facet | Tremblay, Marie-Laurence Xu, Lingling Lefèvre, Thierry Sarker, Muzaddid Orrell, Kathleen E. Leclerc, Jérémie Meng, Qing Pézolet, Michel Auger, Michèle Liu, Xiang-Qin Rainey, Jan K. |
author_sort | Tremblay, Marie-Laurence |
collection | PubMed |
description | Spiders store spidroins in their silk glands as high concentration aqueous solutions, spinning these dopes into fibres with outstanding mechanical properties. Aciniform (or wrapping) silk is the toughest spider silk and is devoid of the short amino acid sequence motifs characteristic of the other spidroins. Using solution-state NMR spectroscopy, we demonstrate that the 200 amino acid Argiope trifasciata AcSp1 repeat unit contrasts with previously characterized spidroins, adopting a globular 5-helix bundle flanked by intrinsically disordered N- and C-terminal tails. Split-intein-mediated segmental NMR-active isotope-enrichment allowed unambiguous demonstration of modular and malleable “beads-on-a-string” concatemeric behaviour. Concatemers form fibres upon manual drawing with silk-like morphology and mechanical properties, alongside secondary structuring and orientation consistent with native AcSp1 fibres. AcSp1 structural stability varies locally, with the fifth helix denaturing most readily. The structural transition of aciniform spidroin from a mostly α-helical dope to a mixed α-helix/β-sheet-containing fibre can be directly related to spidroin architecture and stability. |
format | Online Article Text |
id | pubmed-4481645 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-44816452015-06-30 Spider wrapping silk fibre architecture arising from its modular soluble protein precursor Tremblay, Marie-Laurence Xu, Lingling Lefèvre, Thierry Sarker, Muzaddid Orrell, Kathleen E. Leclerc, Jérémie Meng, Qing Pézolet, Michel Auger, Michèle Liu, Xiang-Qin Rainey, Jan K. Sci Rep Article Spiders store spidroins in their silk glands as high concentration aqueous solutions, spinning these dopes into fibres with outstanding mechanical properties. Aciniform (or wrapping) silk is the toughest spider silk and is devoid of the short amino acid sequence motifs characteristic of the other spidroins. Using solution-state NMR spectroscopy, we demonstrate that the 200 amino acid Argiope trifasciata AcSp1 repeat unit contrasts with previously characterized spidroins, adopting a globular 5-helix bundle flanked by intrinsically disordered N- and C-terminal tails. Split-intein-mediated segmental NMR-active isotope-enrichment allowed unambiguous demonstration of modular and malleable “beads-on-a-string” concatemeric behaviour. Concatemers form fibres upon manual drawing with silk-like morphology and mechanical properties, alongside secondary structuring and orientation consistent with native AcSp1 fibres. AcSp1 structural stability varies locally, with the fifth helix denaturing most readily. The structural transition of aciniform spidroin from a mostly α-helical dope to a mixed α-helix/β-sheet-containing fibre can be directly related to spidroin architecture and stability. Nature Publishing Group 2015-06-26 /pmc/articles/PMC4481645/ /pubmed/26112753 http://dx.doi.org/10.1038/srep11502 Text en Copyright © 2015, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Tremblay, Marie-Laurence Xu, Lingling Lefèvre, Thierry Sarker, Muzaddid Orrell, Kathleen E. Leclerc, Jérémie Meng, Qing Pézolet, Michel Auger, Michèle Liu, Xiang-Qin Rainey, Jan K. Spider wrapping silk fibre architecture arising from its modular soluble protein precursor |
title | Spider wrapping silk fibre architecture arising from its modular soluble protein precursor |
title_full | Spider wrapping silk fibre architecture arising from its modular soluble protein precursor |
title_fullStr | Spider wrapping silk fibre architecture arising from its modular soluble protein precursor |
title_full_unstemmed | Spider wrapping silk fibre architecture arising from its modular soluble protein precursor |
title_short | Spider wrapping silk fibre architecture arising from its modular soluble protein precursor |
title_sort | spider wrapping silk fibre architecture arising from its modular soluble protein precursor |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481645/ https://www.ncbi.nlm.nih.gov/pubmed/26112753 http://dx.doi.org/10.1038/srep11502 |
work_keys_str_mv | AT tremblaymarielaurence spiderwrappingsilkfibrearchitecturearisingfromitsmodularsolubleproteinprecursor AT xulingling spiderwrappingsilkfibrearchitecturearisingfromitsmodularsolubleproteinprecursor AT lefevrethierry spiderwrappingsilkfibrearchitecturearisingfromitsmodularsolubleproteinprecursor AT sarkermuzaddid spiderwrappingsilkfibrearchitecturearisingfromitsmodularsolubleproteinprecursor AT orrellkathleene spiderwrappingsilkfibrearchitecturearisingfromitsmodularsolubleproteinprecursor AT leclercjeremie spiderwrappingsilkfibrearchitecturearisingfromitsmodularsolubleproteinprecursor AT mengqing spiderwrappingsilkfibrearchitecturearisingfromitsmodularsolubleproteinprecursor AT pezoletmichel spiderwrappingsilkfibrearchitecturearisingfromitsmodularsolubleproteinprecursor AT augermichele spiderwrappingsilkfibrearchitecturearisingfromitsmodularsolubleproteinprecursor AT liuxiangqin spiderwrappingsilkfibrearchitecturearisingfromitsmodularsolubleproteinprecursor AT raineyjank spiderwrappingsilkfibrearchitecturearisingfromitsmodularsolubleproteinprecursor |