Cargando…

Spider wrapping silk fibre architecture arising from its modular soluble protein precursor

Spiders store spidroins in their silk glands as high concentration aqueous solutions, spinning these dopes into fibres with outstanding mechanical properties. Aciniform (or wrapping) silk is the toughest spider silk and is devoid of the short amino acid sequence motifs characteristic of the other sp...

Descripción completa

Detalles Bibliográficos
Autores principales: Tremblay, Marie-Laurence, Xu, Lingling, Lefèvre, Thierry, Sarker, Muzaddid, Orrell, Kathleen E., Leclerc, Jérémie, Meng, Qing, Pézolet, Michel, Auger, Michèle, Liu, Xiang-Qin, Rainey, Jan K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481645/
https://www.ncbi.nlm.nih.gov/pubmed/26112753
http://dx.doi.org/10.1038/srep11502
_version_ 1782378301626515456
author Tremblay, Marie-Laurence
Xu, Lingling
Lefèvre, Thierry
Sarker, Muzaddid
Orrell, Kathleen E.
Leclerc, Jérémie
Meng, Qing
Pézolet, Michel
Auger, Michèle
Liu, Xiang-Qin
Rainey, Jan K.
author_facet Tremblay, Marie-Laurence
Xu, Lingling
Lefèvre, Thierry
Sarker, Muzaddid
Orrell, Kathleen E.
Leclerc, Jérémie
Meng, Qing
Pézolet, Michel
Auger, Michèle
Liu, Xiang-Qin
Rainey, Jan K.
author_sort Tremblay, Marie-Laurence
collection PubMed
description Spiders store spidroins in their silk glands as high concentration aqueous solutions, spinning these dopes into fibres with outstanding mechanical properties. Aciniform (or wrapping) silk is the toughest spider silk and is devoid of the short amino acid sequence motifs characteristic of the other spidroins. Using solution-state NMR spectroscopy, we demonstrate that the 200 amino acid Argiope trifasciata AcSp1 repeat unit contrasts with previously characterized spidroins, adopting a globular 5-helix bundle flanked by intrinsically disordered N- and C-terminal tails. Split-intein-mediated segmental NMR-active isotope-enrichment allowed unambiguous demonstration of modular and malleable “beads-on-a-string” concatemeric behaviour. Concatemers form fibres upon manual drawing with silk-like morphology and mechanical properties, alongside secondary structuring and orientation consistent with native AcSp1 fibres. AcSp1 structural stability varies locally, with the fifth helix denaturing most readily. The structural transition of aciniform spidroin from a mostly α-helical dope to a mixed α-helix/β-sheet-containing fibre can be directly related to spidroin architecture and stability.
format Online
Article
Text
id pubmed-4481645
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-44816452015-06-30 Spider wrapping silk fibre architecture arising from its modular soluble protein precursor Tremblay, Marie-Laurence Xu, Lingling Lefèvre, Thierry Sarker, Muzaddid Orrell, Kathleen E. Leclerc, Jérémie Meng, Qing Pézolet, Michel Auger, Michèle Liu, Xiang-Qin Rainey, Jan K. Sci Rep Article Spiders store spidroins in their silk glands as high concentration aqueous solutions, spinning these dopes into fibres with outstanding mechanical properties. Aciniform (or wrapping) silk is the toughest spider silk and is devoid of the short amino acid sequence motifs characteristic of the other spidroins. Using solution-state NMR spectroscopy, we demonstrate that the 200 amino acid Argiope trifasciata AcSp1 repeat unit contrasts with previously characterized spidroins, adopting a globular 5-helix bundle flanked by intrinsically disordered N- and C-terminal tails. Split-intein-mediated segmental NMR-active isotope-enrichment allowed unambiguous demonstration of modular and malleable “beads-on-a-string” concatemeric behaviour. Concatemers form fibres upon manual drawing with silk-like morphology and mechanical properties, alongside secondary structuring and orientation consistent with native AcSp1 fibres. AcSp1 structural stability varies locally, with the fifth helix denaturing most readily. The structural transition of aciniform spidroin from a mostly α-helical dope to a mixed α-helix/β-sheet-containing fibre can be directly related to spidroin architecture and stability. Nature Publishing Group 2015-06-26 /pmc/articles/PMC4481645/ /pubmed/26112753 http://dx.doi.org/10.1038/srep11502 Text en Copyright © 2015, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Tremblay, Marie-Laurence
Xu, Lingling
Lefèvre, Thierry
Sarker, Muzaddid
Orrell, Kathleen E.
Leclerc, Jérémie
Meng, Qing
Pézolet, Michel
Auger, Michèle
Liu, Xiang-Qin
Rainey, Jan K.
Spider wrapping silk fibre architecture arising from its modular soluble protein precursor
title Spider wrapping silk fibre architecture arising from its modular soluble protein precursor
title_full Spider wrapping silk fibre architecture arising from its modular soluble protein precursor
title_fullStr Spider wrapping silk fibre architecture arising from its modular soluble protein precursor
title_full_unstemmed Spider wrapping silk fibre architecture arising from its modular soluble protein precursor
title_short Spider wrapping silk fibre architecture arising from its modular soluble protein precursor
title_sort spider wrapping silk fibre architecture arising from its modular soluble protein precursor
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481645/
https://www.ncbi.nlm.nih.gov/pubmed/26112753
http://dx.doi.org/10.1038/srep11502
work_keys_str_mv AT tremblaymarielaurence spiderwrappingsilkfibrearchitecturearisingfromitsmodularsolubleproteinprecursor
AT xulingling spiderwrappingsilkfibrearchitecturearisingfromitsmodularsolubleproteinprecursor
AT lefevrethierry spiderwrappingsilkfibrearchitecturearisingfromitsmodularsolubleproteinprecursor
AT sarkermuzaddid spiderwrappingsilkfibrearchitecturearisingfromitsmodularsolubleproteinprecursor
AT orrellkathleene spiderwrappingsilkfibrearchitecturearisingfromitsmodularsolubleproteinprecursor
AT leclercjeremie spiderwrappingsilkfibrearchitecturearisingfromitsmodularsolubleproteinprecursor
AT mengqing spiderwrappingsilkfibrearchitecturearisingfromitsmodularsolubleproteinprecursor
AT pezoletmichel spiderwrappingsilkfibrearchitecturearisingfromitsmodularsolubleproteinprecursor
AT augermichele spiderwrappingsilkfibrearchitecturearisingfromitsmodularsolubleproteinprecursor
AT liuxiangqin spiderwrappingsilkfibrearchitecturearisingfromitsmodularsolubleproteinprecursor
AT raineyjank spiderwrappingsilkfibrearchitecturearisingfromitsmodularsolubleproteinprecursor