Cargando…

Plasmonic Toroidal Dipolar Response under Radially Polarized Excitation

Plasmonic toroidal resonance has attracted growing interests because of its low loss electromagnetic properties and potential high sensitive nanophotonic applications. However, the realization in a metamaterial requires three-dimensional complicated structural design so far. In this paper, we design...

Descripción completa

Detalles Bibliográficos
Autores principales: Bao, Yanjun, Zhu, Xing, Fang, Zheyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481838/
https://www.ncbi.nlm.nih.gov/pubmed/26114966
http://dx.doi.org/10.1038/srep11793
Descripción
Sumario:Plasmonic toroidal resonance has attracted growing interests because of its low loss electromagnetic properties and potential high sensitive nanophotonic applications. However, the realization in a metamaterial requires three-dimensional complicated structural design so far. In this paper, we design a simple metal-dielectric-metal (MIM) sandwich nanostructure, which exhibits a strong toroidal dipolar resonance under radially polarized excitation. The toroidal dipole moment as the dominant contribution for the scattering is demonstrated by the mirror-image method and further analyzed by Lagrangian hybridization model. The proposed toroidal configuration also shows a highly tolerant for misalignment between the structure center and the incident light focus. Our study proves the way for the toroidal plasmonic application with the cylindrical vector beams.