Cargando…
Optimal Self-Tuning PID Controller Based on Low Power Consumption for a Server Fan Cooling System
Recently, saving the cooling power in servers by controlling the fan speed has attracted considerable attention because of the increasing demand for high-density servers. This paper presents an optimal self-tuning proportional-integral-derivative (PID) controller, combining a PID neural network (PID...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481903/ https://www.ncbi.nlm.nih.gov/pubmed/26007725 http://dx.doi.org/10.3390/s150511685 |
_version_ | 1782378342716014592 |
---|---|
author | Lee, Chengming Chen, Rongshun |
author_facet | Lee, Chengming Chen, Rongshun |
author_sort | Lee, Chengming |
collection | PubMed |
description | Recently, saving the cooling power in servers by controlling the fan speed has attracted considerable attention because of the increasing demand for high-density servers. This paper presents an optimal self-tuning proportional-integral-derivative (PID) controller, combining a PID neural network (PIDNN) with fan-power-based optimization in the transient-state temperature response in the time domain, for a server fan cooling system. Because the thermal model of the cooling system is nonlinear and complex, a server mockup system simulating a 1U rack server was constructed and a fan power model was created using a third-order nonlinear curve fit to determine the cooling power consumption by the fan speed control. PIDNN with a time domain criterion is used to tune all online and optimized PID gains. The proposed controller was validated through experiments of step response when the server operated from the low to high power state. The results show that up to 14% of a server’s fan cooling power can be saved if the fan control permits a slight temperature response overshoot in the electronic components, which may provide a time-saving strategy for tuning the PID controller to control the server fan speed during low fan power consumption. |
format | Online Article Text |
id | pubmed-4481903 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-44819032015-06-29 Optimal Self-Tuning PID Controller Based on Low Power Consumption for a Server Fan Cooling System Lee, Chengming Chen, Rongshun Sensors (Basel) Article Recently, saving the cooling power in servers by controlling the fan speed has attracted considerable attention because of the increasing demand for high-density servers. This paper presents an optimal self-tuning proportional-integral-derivative (PID) controller, combining a PID neural network (PIDNN) with fan-power-based optimization in the transient-state temperature response in the time domain, for a server fan cooling system. Because the thermal model of the cooling system is nonlinear and complex, a server mockup system simulating a 1U rack server was constructed and a fan power model was created using a third-order nonlinear curve fit to determine the cooling power consumption by the fan speed control. PIDNN with a time domain criterion is used to tune all online and optimized PID gains. The proposed controller was validated through experiments of step response when the server operated from the low to high power state. The results show that up to 14% of a server’s fan cooling power can be saved if the fan control permits a slight temperature response overshoot in the electronic components, which may provide a time-saving strategy for tuning the PID controller to control the server fan speed during low fan power consumption. MDPI 2015-05-20 /pmc/articles/PMC4481903/ /pubmed/26007725 http://dx.doi.org/10.3390/s150511685 Text en © 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lee, Chengming Chen, Rongshun Optimal Self-Tuning PID Controller Based on Low Power Consumption for a Server Fan Cooling System |
title | Optimal Self-Tuning PID Controller Based on Low Power Consumption for a Server Fan Cooling System |
title_full | Optimal Self-Tuning PID Controller Based on Low Power Consumption for a Server Fan Cooling System |
title_fullStr | Optimal Self-Tuning PID Controller Based on Low Power Consumption for a Server Fan Cooling System |
title_full_unstemmed | Optimal Self-Tuning PID Controller Based on Low Power Consumption for a Server Fan Cooling System |
title_short | Optimal Self-Tuning PID Controller Based on Low Power Consumption for a Server Fan Cooling System |
title_sort | optimal self-tuning pid controller based on low power consumption for a server fan cooling system |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481903/ https://www.ncbi.nlm.nih.gov/pubmed/26007725 http://dx.doi.org/10.3390/s150511685 |
work_keys_str_mv | AT leechengming optimalselftuningpidcontrollerbasedonlowpowerconsumptionforaserverfancoolingsystem AT chenrongshun optimalselftuningpidcontrollerbasedonlowpowerconsumptionforaserverfancoolingsystem |