Cargando…
Semi-Supervised Bayesian Classification of Materials with Impact-Echo Signals
The detection and identification of internal defects in a material require the use of some technology that translates the hidden interior damages into observable signals with different signature-defect correspondences. We apply impact-echo techniques for this purpose. The materials are classified ac...
Autores principales: | Igual, Jorge, Salazar, Addisson, Safont, Gonzalo, Vergara, Luis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481956/ https://www.ncbi.nlm.nih.gov/pubmed/25996512 http://dx.doi.org/10.3390/s150511528 |
Ejemplares similares
-
Computing the Partial Correlation of ICA Models for Non-Gaussian Graph Signal Processing
por: Belda, Jordi, et al.
Publicado: (2018) -
A New Surrogating Algorithm by the Complex Graph Fourier Transform (CGFT)
por: Belda, Jordi, et al.
Publicado: (2019) -
Bayesian semi-supervised classification of bacterial samples using MLST databases
por: Cheng, Lu, et al.
Publicado: (2011) -
Self-supervised Learning for Semi-supervised Time Series Classification
por: Jawed, Shayan, et al.
Publicado: (2020) -
A Study on the Applicability of the Impact-Echo Test Using Semi-Supervised Learning Based on Dynamic Preconditions
por: Yoon, Young-Geun, et al.
Publicado: (2022)