Cargando…
Beyond Where to How: A Machine Learning Approach for Sensing Mobility Contexts Using Smartphone Sensors (†)
This paper presents the results of research on the use of smartphone sensors (namely, GPS and accelerometers), geospatial information (points of interest, such as bus stops and train stations) and machine learning (ML) to sense mobility contexts. Our goal is to develop techniques to continuously and...
Autor principal: | Guinness, Robert E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481999/ https://www.ncbi.nlm.nih.gov/pubmed/25928060 http://dx.doi.org/10.3390/s150509962 |
Ejemplares similares
-
An Automated Machine-Learning Approach for Road Pothole Detection Using Smartphone Sensor Data
por: Wu, Chao, et al.
Publicado: (2020) -
A Hybrid Smartphone Indoor Positioning Solution for Mobile LBS
por: Liu, Jingbin, et al.
Publicado: (2012) -
How Mobility and Sociality Reshape the Context: A Decade of Experience in Mobile CrowdSensing
por: Girolami, Michele, et al.
Publicado: (2021) -
Human Behavior Cognition Using Smartphone Sensors
por: Pei, Ling, et al.
Publicado: (2013) -
Driver behavior profiling: An investigation with different smartphone sensors and machine learning
por: Ferreira, Jair, et al.
Publicado: (2017)