Cargando…
Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions
80% of arable land in Africa has low soil fertility and suffers from physical soil problems. Additionally, significant amounts of nutrients are lost every year due to unsustainable soil management practices. This is partially the result of insufficient use of soil management knowledge. To help bridg...
Autores principales: | Hengl, Tomislav, Heuvelink, Gerard B. M., Kempen, Bas, Leenaars, Johan G. B., Walsh, Markus G., Shepherd, Keith D., Sila, Andrew, MacMillan, Robert A., Mendes de Jesus, Jorge, Tamene, Lulseged, Tondoh, Jérôme E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4482144/ https://www.ncbi.nlm.nih.gov/pubmed/26110833 http://dx.doi.org/10.1371/journal.pone.0125814 |
Ejemplares similares
-
Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning
por: Hengl, Tomislav, et al.
Publicado: (2017) -
SoilGrids250m: Global gridded soil information based on machine learning
por: Hengl, Tomislav, et al.
Publicado: (2017) -
SoilGrids1km — Global Soil Information Based on Automated Mapping
por: Hengl, Tomislav, et al.
Publicado: (2014) -
Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables
por: Hengl, Tomislav, et al.
Publicado: (2018) -
Mapping rootable depth and root zone plant-available water holding capacity of the soil of sub-Saharan Africa
por: Leenaars, Johan G.B., et al.
Publicado: (2018)