Cargando…

Detection and characterization of epistasis between QTLs on plant height in rice using single segment substitution lines

Hua-jing-xian 74 and its 12 single segment substitution lines (SSSLs) in rice were used as crossing parents to construct a half diallel crossing population. A total number of 91 materials were grown under three planting densities. By analysis of average plant height (PH) over all environments 10 SSS...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Haitao, Liu, Ziqiang, Fu, Xuelin, Dai, Ziju, Wang, Shaokui, Zhang, Guiquan, Zeng, Ruizhen, Liu, Guifu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Japanese Society of Breeding 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4482168/
https://www.ncbi.nlm.nih.gov/pubmed/26175615
http://dx.doi.org/10.1270/jsbbs.65.192
Descripción
Sumario:Hua-jing-xian 74 and its 12 single segment substitution lines (SSSLs) in rice were used as crossing parents to construct a half diallel crossing population. A total number of 91 materials were grown under three planting densities. By analysis of average plant height (PH) over all environments 10 SSSLs were detected with significant additives and 6 SSSLs with significant dominances. These SSSLs were further tested under different densities respectively, indicating that some of single locus effects were sensitive to densities and the conditions under the density of 16.7 cm × 16.7 cm maybe inhibited the expressing of these PH QTLs. Qualitative and quantitative analyses of each four participating genotypes indicated that digenic interactions among these QTLs were prevalent. Of 66 tested interactions, about 42.4% were epistatic (P < 5%). Although some QTLs hadn’t single locus effects, they were possible to form digenic interactions. A significant finding was that the detected epistases were mostly negative. Additionally, these epistases were also found being sensitive to planting densities, the conditions under the density of 10 cm × 16.7 cm perhaps promoted the expressing of epistatic interactions among PH QTLs.