Cargando…
Risk prediction for chronic kidney disease progression using heterogeneous electronic health record data and time series analysis
Background As adoption of electronic health records continues to increase, there is an opportunity to incorporate clinical documentation as well as laboratory values and demographics into risk prediction modeling. Objective The authors develop a risk prediction model for chronic kidney disease (CKD)...
Autores principales: | Perotte, Adler, Ranganath, Rajesh, Hirsch, Jamie S, Blei, David, Elhadad, Noémie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4482276/ https://www.ncbi.nlm.nih.gov/pubmed/25896647 http://dx.doi.org/10.1093/jamia/ocv024 |
Ejemplares similares
-
Parameterizing time in electronic health record studies
por: Hripcsak, George, et al.
Publicado: (2015) -
Diagnosis code assignment: models and evaluation metrics
por: Perotte, Adler, et al.
Publicado: (2014) -
Characterizing non-heroin opioid overdoses using electronic health records
por: Averitt, Amelia J, et al.
Publicado: (2019) -
Development and validation of prediction models for mechanical ventilation, renal replacement therapy, and readmission in COVID-19 patients
por: Rodriguez, Victor Alfonso, et al.
Publicado: (2021) -
Automated methods for the summarization of electronic health records
por: Pivovarov, Rimma, et al.
Publicado: (2015)