Cargando…

Detection of Peramivir and Laninamivir, New Anti-Influenza Drugs, in Sewage Effluent and River Waters in Japan

This is the first report of the detection of two new anti-influenza drugs, peramivir (PER) and laninamivir (LAN), in Japanese sewage effluent and river waters. Over about 1 year from October 2013 to July 2014, including the influenza prevalence season in January and February 2014, we monitored for f...

Descripción completa

Detalles Bibliográficos
Autores principales: Azuma, Takashi, Ishiuchi, Hirotaka, Inoyama, Tomomi, Teranishi, Yusuke, Yamaoka, Misato, Sato, Takaji, Yamashita, Naoyuki, Tanaka, Hiroaki, Mino, Yoshiki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4482326/
https://www.ncbi.nlm.nih.gov/pubmed/26110817
http://dx.doi.org/10.1371/journal.pone.0131412
Descripción
Sumario:This is the first report of the detection of two new anti-influenza drugs, peramivir (PER) and laninamivir (LAN), in Japanese sewage effluent and river waters. Over about 1 year from October 2013 to July 2014, including the influenza prevalence season in January and February 2014, we monitored for five anti-influenza drugs—oseltamivir (OS), oseltamivir carboxylate (OC), zanamivir (ZAN), PER, and LAN—in river waters and in sewage effluent flowing into urban rivers of the Yodo River system in Japan. The dynamic profiles of these anti-influenza drugs were synchronized well with that of the numbers of influenza patients treated with the drugs. The highest levels in sewage effluents and river waters were, respectively, 82 and 41 ng/L (OS), 347 and 125 ng/L (OC), 110 and 35 ng/L (ZAN), 64 and 11 ng/L (PER), and 21 and 9 ng/L (LAN). However, application of ozone treatment before discharge from sewage treatment plants was effective in reducing the levels of these anti-influenza drugs in effluent. The effectiveness of the ozone treatment and the drug dependent difference in susceptibility against ozone were further evidenced by ozonation of a STP effluent in a batch reactor. These findings should help to promote further environmental risk assessment of the generation of drug-resistant influenza viruses in aquatic environments.