Cargando…

Guanidinoacetate Is More Effective than Creatine at Enhancing Tissue Creatine Stores while Consequently Limiting Methionine Availability in Yucatan Miniature Pigs

Creatine (Cr) is an important high-energy phosphate buffer in tissues with a high energy demand such as muscle and brain and is consequently a highly consumed nutritional supplement. Creatine is synthesized via the S-adenosylmethionine (SAM) dependent methylation of guanidinoacetate (GAA) which is n...

Descripción completa

Detalles Bibliográficos
Autores principales: McBreairty, Laura E., Robinson, Jason L., Furlong, Kayla R., Brunton, Janet A., Bertolo, Robert F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4482513/
https://www.ncbi.nlm.nih.gov/pubmed/26110793
http://dx.doi.org/10.1371/journal.pone.0131563
_version_ 1782378454992289792
author McBreairty, Laura E.
Robinson, Jason L.
Furlong, Kayla R.
Brunton, Janet A.
Bertolo, Robert F.
author_facet McBreairty, Laura E.
Robinson, Jason L.
Furlong, Kayla R.
Brunton, Janet A.
Bertolo, Robert F.
author_sort McBreairty, Laura E.
collection PubMed
description Creatine (Cr) is an important high-energy phosphate buffer in tissues with a high energy demand such as muscle and brain and is consequently a highly consumed nutritional supplement. Creatine is synthesized via the S-adenosylmethionine (SAM) dependent methylation of guanidinoacetate (GAA) which is not regulated by a feedback mechanism. The first objective of this study was to determine the effectiveness of GAA at increasing tissue Cr stores. Because SAM is required for other methylation reactions, we also wanted to determine whether an increased creatine synthesis would lead to a lower availability of methyl groups for other methylated products. Three month-old pigs (n = 18) were fed control, GAA- or Cr-supplemented diets twice daily. On day 18 or 19, anesthesia was induced 1–3 hours post feeding and a bolus of [methyl-(3)H]methionine was intravenously infused. After 30 minutes, the liver was analyzed for methyl-(3)H incorporation into protein, Cr, phosphatidylcholine (PC) and DNA. Although both Cr and GAA led to higher hepatic Cr concentration, only supplementation with GAA led to higher levels of muscle Cr (P < 0.05). Only GAA supplementation resulted in lower methyl-(3)H incorporation into PC and protein as well as lower hepatic SAM concentration compared to the controls, suggesting that Cr synthesis resulted in a limited methyl supply for PC and protein synthesis (P < 0.05). Although GAA is more effective than Cr at supporting muscle Cr accretion, further research should be conducted into the long term consequences of a limited methyl supply and its effects on protein and PC homeostasis.
format Online
Article
Text
id pubmed-4482513
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-44825132015-07-01 Guanidinoacetate Is More Effective than Creatine at Enhancing Tissue Creatine Stores while Consequently Limiting Methionine Availability in Yucatan Miniature Pigs McBreairty, Laura E. Robinson, Jason L. Furlong, Kayla R. Brunton, Janet A. Bertolo, Robert F. PLoS One Research Article Creatine (Cr) is an important high-energy phosphate buffer in tissues with a high energy demand such as muscle and brain and is consequently a highly consumed nutritional supplement. Creatine is synthesized via the S-adenosylmethionine (SAM) dependent methylation of guanidinoacetate (GAA) which is not regulated by a feedback mechanism. The first objective of this study was to determine the effectiveness of GAA at increasing tissue Cr stores. Because SAM is required for other methylation reactions, we also wanted to determine whether an increased creatine synthesis would lead to a lower availability of methyl groups for other methylated products. Three month-old pigs (n = 18) were fed control, GAA- or Cr-supplemented diets twice daily. On day 18 or 19, anesthesia was induced 1–3 hours post feeding and a bolus of [methyl-(3)H]methionine was intravenously infused. After 30 minutes, the liver was analyzed for methyl-(3)H incorporation into protein, Cr, phosphatidylcholine (PC) and DNA. Although both Cr and GAA led to higher hepatic Cr concentration, only supplementation with GAA led to higher levels of muscle Cr (P < 0.05). Only GAA supplementation resulted in lower methyl-(3)H incorporation into PC and protein as well as lower hepatic SAM concentration compared to the controls, suggesting that Cr synthesis resulted in a limited methyl supply for PC and protein synthesis (P < 0.05). Although GAA is more effective than Cr at supporting muscle Cr accretion, further research should be conducted into the long term consequences of a limited methyl supply and its effects on protein and PC homeostasis. Public Library of Science 2015-06-25 /pmc/articles/PMC4482513/ /pubmed/26110793 http://dx.doi.org/10.1371/journal.pone.0131563 Text en © 2015 McBreairty et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
McBreairty, Laura E.
Robinson, Jason L.
Furlong, Kayla R.
Brunton, Janet A.
Bertolo, Robert F.
Guanidinoacetate Is More Effective than Creatine at Enhancing Tissue Creatine Stores while Consequently Limiting Methionine Availability in Yucatan Miniature Pigs
title Guanidinoacetate Is More Effective than Creatine at Enhancing Tissue Creatine Stores while Consequently Limiting Methionine Availability in Yucatan Miniature Pigs
title_full Guanidinoacetate Is More Effective than Creatine at Enhancing Tissue Creatine Stores while Consequently Limiting Methionine Availability in Yucatan Miniature Pigs
title_fullStr Guanidinoacetate Is More Effective than Creatine at Enhancing Tissue Creatine Stores while Consequently Limiting Methionine Availability in Yucatan Miniature Pigs
title_full_unstemmed Guanidinoacetate Is More Effective than Creatine at Enhancing Tissue Creatine Stores while Consequently Limiting Methionine Availability in Yucatan Miniature Pigs
title_short Guanidinoacetate Is More Effective than Creatine at Enhancing Tissue Creatine Stores while Consequently Limiting Methionine Availability in Yucatan Miniature Pigs
title_sort guanidinoacetate is more effective than creatine at enhancing tissue creatine stores while consequently limiting methionine availability in yucatan miniature pigs
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4482513/
https://www.ncbi.nlm.nih.gov/pubmed/26110793
http://dx.doi.org/10.1371/journal.pone.0131563
work_keys_str_mv AT mcbreairtylaurae guanidinoacetateismoreeffectivethancreatineatenhancingtissuecreatinestoreswhileconsequentlylimitingmethionineavailabilityinyucatanminiaturepigs
AT robinsonjasonl guanidinoacetateismoreeffectivethancreatineatenhancingtissuecreatinestoreswhileconsequentlylimitingmethionineavailabilityinyucatanminiaturepigs
AT furlongkaylar guanidinoacetateismoreeffectivethancreatineatenhancingtissuecreatinestoreswhileconsequentlylimitingmethionineavailabilityinyucatanminiaturepigs
AT bruntonjaneta guanidinoacetateismoreeffectivethancreatineatenhancingtissuecreatinestoreswhileconsequentlylimitingmethionineavailabilityinyucatanminiaturepigs
AT bertolorobertf guanidinoacetateismoreeffectivethancreatineatenhancingtissuecreatinestoreswhileconsequentlylimitingmethionineavailabilityinyucatanminiaturepigs