Cargando…
The Role of Transposable Elements in the Origin and Evolution of MicroRNAs in Human
MicroRNAs (miRNAs) are crucial regulators of gene expression at the post-transcriptional level in eukaryotes via targeting gene 3'-untranslated regions. Transposable elements (TEs) are considered as natural origins of some miRNAs. However, what miRNAs are and how these miRNAs originate and evol...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4482582/ https://www.ncbi.nlm.nih.gov/pubmed/26115450 http://dx.doi.org/10.1371/journal.pone.0131365 |
Sumario: | MicroRNAs (miRNAs) are crucial regulators of gene expression at the post-transcriptional level in eukaryotes via targeting gene 3'-untranslated regions. Transposable elements (TEs) are considered as natural origins of some miRNAs. However, what miRNAs are and how these miRNAs originate and evolve from TEs remain unclear. We identified 409 TE-derived miRNAs (386 overlapped with TEs and 23 un-overlapped with TEs) which are derived from TEs in human. This indicates that the TEs play important roles in origin of miRNAs in human. In addition, we found that the proportions of miRNAs derived from TEs (MDTEs) in human are more than other vertebrates especially non-mammal vertebrates. Furthermore, we classified MDTEs into three types and found that TE head or tail sequences along with adjacent genomic sequences contribute to generation of human miRNAs. Our current study will improve the understanding of origin and evolution of human miRNAs. |
---|