Cargando…
Molecular Dynamics of Channelrhodopsin at the Early Stages of Channel Opening
Channelrhodopsin (ChR) is a light-gated cation channel that responds to blue light. Since ChR can be readily expressed in specific neurons to precisely control their activities by light, it has become a powerful tool in neuroscience. Although the recently solved crystal structure of a chimeric ChR,...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4482709/ https://www.ncbi.nlm.nih.gov/pubmed/26114863 http://dx.doi.org/10.1371/journal.pone.0131094 |
_version_ | 1782378491722858496 |
---|---|
author | Takemoto, Mizuki Kato, Hideaki E. Koyama, Michio Ito, Jumpei Kamiya, Motoshi Hayashi, Shigehiko Maturana, Andrés D. Deisseroth, Karl Ishitani, Ryuichiro Nureki, Osamu |
author_facet | Takemoto, Mizuki Kato, Hideaki E. Koyama, Michio Ito, Jumpei Kamiya, Motoshi Hayashi, Shigehiko Maturana, Andrés D. Deisseroth, Karl Ishitani, Ryuichiro Nureki, Osamu |
author_sort | Takemoto, Mizuki |
collection | PubMed |
description | Channelrhodopsin (ChR) is a light-gated cation channel that responds to blue light. Since ChR can be readily expressed in specific neurons to precisely control their activities by light, it has become a powerful tool in neuroscience. Although the recently solved crystal structure of a chimeric ChR, C1C2, provided the structural basis for ChR, our understanding of the molecular mechanism of ChR still remains limited. Here we performed electrophysiological analyses and all-atom molecular dynamics (MD) simulations, to investigate the importance of the intracellular and central constrictions of the ion conducting pore observed in the crystal structure of C1C2. Our electrophysiological analysis revealed that two glutamate residues, Glu122 and Glu129, in the intracellular and central constrictions, respectively, should be deprotonated in the photocycle. The simulation results suggested that the deprotonation of Glu129 in the central constriction leads to ion leakage in the ground state, and implied that the protonation of Glu129 is important for preventing ion leakage in the ground state. Moreover, we modeled the 13-cis retinal bound; i.e., activated C1C2, and performed MD simulations to investigate the conformational changes in the early stage of the photocycle. Our simulations suggested that retinal photoisomerization induces the conformational change toward channel opening, including the movements of TM6, TM7 and TM2. These insights into the dynamics of the ground states and the early photocycle stages enhance our understanding of the channel function of ChR. |
format | Online Article Text |
id | pubmed-4482709 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-44827092015-06-29 Molecular Dynamics of Channelrhodopsin at the Early Stages of Channel Opening Takemoto, Mizuki Kato, Hideaki E. Koyama, Michio Ito, Jumpei Kamiya, Motoshi Hayashi, Shigehiko Maturana, Andrés D. Deisseroth, Karl Ishitani, Ryuichiro Nureki, Osamu PLoS One Research Article Channelrhodopsin (ChR) is a light-gated cation channel that responds to blue light. Since ChR can be readily expressed in specific neurons to precisely control their activities by light, it has become a powerful tool in neuroscience. Although the recently solved crystal structure of a chimeric ChR, C1C2, provided the structural basis for ChR, our understanding of the molecular mechanism of ChR still remains limited. Here we performed electrophysiological analyses and all-atom molecular dynamics (MD) simulations, to investigate the importance of the intracellular and central constrictions of the ion conducting pore observed in the crystal structure of C1C2. Our electrophysiological analysis revealed that two glutamate residues, Glu122 and Glu129, in the intracellular and central constrictions, respectively, should be deprotonated in the photocycle. The simulation results suggested that the deprotonation of Glu129 in the central constriction leads to ion leakage in the ground state, and implied that the protonation of Glu129 is important for preventing ion leakage in the ground state. Moreover, we modeled the 13-cis retinal bound; i.e., activated C1C2, and performed MD simulations to investigate the conformational changes in the early stage of the photocycle. Our simulations suggested that retinal photoisomerization induces the conformational change toward channel opening, including the movements of TM6, TM7 and TM2. These insights into the dynamics of the ground states and the early photocycle stages enhance our understanding of the channel function of ChR. Public Library of Science 2015-06-26 /pmc/articles/PMC4482709/ /pubmed/26114863 http://dx.doi.org/10.1371/journal.pone.0131094 Text en © 2015 Takemoto et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Takemoto, Mizuki Kato, Hideaki E. Koyama, Michio Ito, Jumpei Kamiya, Motoshi Hayashi, Shigehiko Maturana, Andrés D. Deisseroth, Karl Ishitani, Ryuichiro Nureki, Osamu Molecular Dynamics of Channelrhodopsin at the Early Stages of Channel Opening |
title | Molecular Dynamics of Channelrhodopsin at the Early Stages of Channel Opening |
title_full | Molecular Dynamics of Channelrhodopsin at the Early Stages of Channel Opening |
title_fullStr | Molecular Dynamics of Channelrhodopsin at the Early Stages of Channel Opening |
title_full_unstemmed | Molecular Dynamics of Channelrhodopsin at the Early Stages of Channel Opening |
title_short | Molecular Dynamics of Channelrhodopsin at the Early Stages of Channel Opening |
title_sort | molecular dynamics of channelrhodopsin at the early stages of channel opening |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4482709/ https://www.ncbi.nlm.nih.gov/pubmed/26114863 http://dx.doi.org/10.1371/journal.pone.0131094 |
work_keys_str_mv | AT takemotomizuki moleculardynamicsofchannelrhodopsinattheearlystagesofchannelopening AT katohideakie moleculardynamicsofchannelrhodopsinattheearlystagesofchannelopening AT koyamamichio moleculardynamicsofchannelrhodopsinattheearlystagesofchannelopening AT itojumpei moleculardynamicsofchannelrhodopsinattheearlystagesofchannelopening AT kamiyamotoshi moleculardynamicsofchannelrhodopsinattheearlystagesofchannelopening AT hayashishigehiko moleculardynamicsofchannelrhodopsinattheearlystagesofchannelopening AT maturanaandresd moleculardynamicsofchannelrhodopsinattheearlystagesofchannelopening AT deisserothkarl moleculardynamicsofchannelrhodopsinattheearlystagesofchannelopening AT ishitaniryuichiro moleculardynamicsofchannelrhodopsinattheearlystagesofchannelopening AT nurekiosamu moleculardynamicsofchannelrhodopsinattheearlystagesofchannelopening |