Cargando…
Degree Correlations Optimize Neuronal Network Sensitivity to Sub-Threshold Stimuli
Information processing in the brain crucially depends on the topology of the neuronal connections. We investigate how the topology influences the response of a population of leaky integrate-and-fire neurons to a stimulus. We devise a method to calculate firing rates from a self-consistent system of...
Autores principales: | Schmeltzer, Christian, Kihara, Alexandre Hiroaki, Sokolov, Igor Michailovitsch, Rüdiger, Sten |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4482728/ https://www.ncbi.nlm.nih.gov/pubmed/26115374 http://dx.doi.org/10.1371/journal.pone.0121794 |
Ejemplares similares
-
A k-population model to calculate the firing rate of neuronal networks with degree correlations
por: Schmeltzer, C, et al.
Publicado: (2014) -
Representation of dynamical stimuli in threshold neuron models
por: Tchumatchenko, Tatjana, et al.
Publicado: (2011) -
Representation of Dynamical Stimuli in Populations of Threshold Neurons
por: Tchumatchenko, Tatjana, et al.
Publicado: (2011) -
Gap junctions set the speed and nucleation rate of stage I retinal waves
por: Kähne, Malte, et al.
Publicado: (2019) -
Optimizing information processing in neuronal networks beyond critical states
por: Ferraz, Mariana Sacrini Ayres, et al.
Publicado: (2017)