Cargando…
Krasnoselskii-type algorithm for zeros of strongly monotone Lipschitz maps in classical banach spaces
Let [Formula: see text] , [Formula: see text] , and [Formula: see text] be a strongly monotone and Lipschitz mapping. A Krasnoselskii-type sequence is constructed and proved to converge strongly to the unique solution of [Formula: see text] . Furthermore, our technique of proo f is of independent in...
Autores principales: | Chidume, C E, Bello, A U, Usman, B |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4483176/ https://www.ncbi.nlm.nih.gov/pubmed/26140261 http://dx.doi.org/10.1186/s40064-015-1044-1 |
Ejemplares similares
-
Constructive techniques for zeros of monotone mappings in certain Banach spaces
por: Diop, C, et al.
Publicado: (2015) -
Viscosity iterative algorithm for the zero point of monotone mappings in Banach spaces
por: Tang, Yan
Publicado: (2018) -
Picard iterations for strongly accretive and strongly pseudocontractive Lipschitz maps
por: Chidume, C E
Publicado: (2000) -
Strong Convergence of a Monotone Projection Algorithm in a Banach Space
por: Lv, Songtao
Publicado: (2013) -
Nonlinear Differential Equations of Monotone Types in Banach Spaces
por: Barbu, Viorel
Publicado: (2010)