Cargando…
Application Study of Comprehensive Forecasting Model Based on Entropy Weighting Method on Trend of PM(2.5) Concentration in Guangzhou, China
For the issue of haze-fog, PM(2.5) is the main influence factor of haze-fog pollution in China. The trend of PM(2.5) concentration was analyzed from a qualitative point of view based on mathematical models and simulation in this study. The comprehensive forecasting model (CFM) was developed based on...
Autores principales: | Liu, Dong-jun, Li, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4483750/ https://www.ncbi.nlm.nih.gov/pubmed/26110332 http://dx.doi.org/10.3390/ijerph120607085 |
Ejemplares similares
-
Investigation of PM(2.5) pollution during COVID-19 pandemic in Guangzhou, China
por: Wen, Luyao, et al.
Publicado: (2022) -
Satellite-Based Spatiotemporal Trends in PM(2.5) Concentrations: China, 2004–2013
por: Ma, Zongwei, et al.
Publicado: (2015) -
Contrasting trends of PM(2.5) and surface-ozone concentrations in China from 2013 to 2017
por: Wang, Yonghong, et al.
Publicado: (2020) -
Using Multisource Data to Assess PM(2.5) Exposure and Spatial Analysis of Lung Cancer in Guangzhou, China
por: Fan, Wenfeng, et al.
Publicado: (2022) -
Statistical Seasonal Forecasting of Winter and Spring PM(2.5) Concentrations Over the Korean Peninsula
por: Jeong, Dajeong, et al.
Publicado: (2022)