Cargando…
Fast, multi-frequency, and quantitative nanomechanical mapping of live cells using the atomic force microscope
A longstanding goal in cellular mechanobiology has been to link dynamic biomolecular processes underpinning disease or morphogenesis to spatio-temporal changes in nanoscale mechanical properties such as viscoelasticity, surface tension, and adhesion. This requires the development of quantitative mec...
Autores principales: | Cartagena-Rivera, Alexander X., Wang, Wen-Horng, Geahlen, Robert L., Raman, Arvind |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4484408/ https://www.ncbi.nlm.nih.gov/pubmed/26118423 http://dx.doi.org/10.1038/srep11692 |
Ejemplares similares
-
Nanomechanical Property Maps of Breast Cancer Cells
As Determined by Multiharmonic Atomic Force Microscopy Reveal Syk-Dependent
Changes in Microtubule
Stability Mediated by MAP1B
por: Krisenko, Mariya O., et al.
Publicado: (2014) -
Viral nanomechanics with a virtual atomic force microscope
por: Aznar, María, et al.
Publicado: (2018) -
Quantitative Nanomechanical Mapping of Polyolefin Elastomer at Nanoscale with Atomic Force Microscopy
por: Zhang, Shuting, et al.
Publicado: (2021) -
Frequency-dependent nanomechanical profiling for medical diagnosis
por: Solares, Santiago D, et al.
Publicado: (2022) -
Quantitative Visualization of the Nanomechanical Young’s Modulus of Soft Materials by Atomic Force Microscopy
por: Kim, Seongoh, et al.
Publicado: (2021)