Cargando…
Spinal muscular atrophy phenotype is ameliorated in human motor neurons by SMN increase via different novel RNA therapeutic approaches
Spinal muscular atrophy (SMA) is a primary genetic cause of infant mortality due to mutations in the Survival Motor Neuron (SMN) 1 gene. No cure is available. Antisense oligonucleotides (ASOs) aimed at increasing SMN levels from the paralogous SMN2 gene represent a possible therapeutic strategy. Her...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4485234/ https://www.ncbi.nlm.nih.gov/pubmed/26123042 http://dx.doi.org/10.1038/srep11746 |
_version_ | 1782378755370516480 |
---|---|
author | Nizzardo, Monica Simone, Chiara Dametti, Sara Salani, Sabrina Ulzi, Gianna Pagliarani, Serena Rizzo, Federica Frattini, Emanuele Pagani, Franco Bresolin, Nereo Comi, Giacomo Corti, Stefania |
author_facet | Nizzardo, Monica Simone, Chiara Dametti, Sara Salani, Sabrina Ulzi, Gianna Pagliarani, Serena Rizzo, Federica Frattini, Emanuele Pagani, Franco Bresolin, Nereo Comi, Giacomo Corti, Stefania |
author_sort | Nizzardo, Monica |
collection | PubMed |
description | Spinal muscular atrophy (SMA) is a primary genetic cause of infant mortality due to mutations in the Survival Motor Neuron (SMN) 1 gene. No cure is available. Antisense oligonucleotides (ASOs) aimed at increasing SMN levels from the paralogous SMN2 gene represent a possible therapeutic strategy. Here, we tested in SMA human induced pluripotent stem cells (iPSCs) and iPSC-differentiated motor neurons, three different RNA approaches based on morpholino antisense targeting of the ISSN-1, exon-specific U1 small nuclear RNA (ExSpeU1), and Transcription Activator-Like Effector-Transcription Factor (TALE-TF). All strategies act modulating SMN2 RNA: ASO affects exon 7 splicing, TALE-TF increase SMN2 RNA acting on the promoter, while ExSpeU1 improves pre-mRNA processing. These approaches induced up-regulation of full-length SMN mRNA and differentially affected the Delta-7 isoform: ASO reduced this isoform, while ExSpeU1 and TALE-TF increased it. All approaches upregulate the SMN protein and significantly improve the in vitro SMA motor neurons survival. Thus, these findings demonstrate that therapeutic tools that act on SMN2 RNA are able to rescue the SMA disease phenotype. Our data confirm the feasibility of SMA iPSCs as in vitro disease models and we propose novel RNA approaches as potential therapeutic strategies for treating SMA and other genetic neurological disorders. |
format | Online Article Text |
id | pubmed-4485234 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-44852342015-07-08 Spinal muscular atrophy phenotype is ameliorated in human motor neurons by SMN increase via different novel RNA therapeutic approaches Nizzardo, Monica Simone, Chiara Dametti, Sara Salani, Sabrina Ulzi, Gianna Pagliarani, Serena Rizzo, Federica Frattini, Emanuele Pagani, Franco Bresolin, Nereo Comi, Giacomo Corti, Stefania Sci Rep Article Spinal muscular atrophy (SMA) is a primary genetic cause of infant mortality due to mutations in the Survival Motor Neuron (SMN) 1 gene. No cure is available. Antisense oligonucleotides (ASOs) aimed at increasing SMN levels from the paralogous SMN2 gene represent a possible therapeutic strategy. Here, we tested in SMA human induced pluripotent stem cells (iPSCs) and iPSC-differentiated motor neurons, three different RNA approaches based on morpholino antisense targeting of the ISSN-1, exon-specific U1 small nuclear RNA (ExSpeU1), and Transcription Activator-Like Effector-Transcription Factor (TALE-TF). All strategies act modulating SMN2 RNA: ASO affects exon 7 splicing, TALE-TF increase SMN2 RNA acting on the promoter, while ExSpeU1 improves pre-mRNA processing. These approaches induced up-regulation of full-length SMN mRNA and differentially affected the Delta-7 isoform: ASO reduced this isoform, while ExSpeU1 and TALE-TF increased it. All approaches upregulate the SMN protein and significantly improve the in vitro SMA motor neurons survival. Thus, these findings demonstrate that therapeutic tools that act on SMN2 RNA are able to rescue the SMA disease phenotype. Our data confirm the feasibility of SMA iPSCs as in vitro disease models and we propose novel RNA approaches as potential therapeutic strategies for treating SMA and other genetic neurological disorders. Nature Publishing Group 2015-06-30 /pmc/articles/PMC4485234/ /pubmed/26123042 http://dx.doi.org/10.1038/srep11746 Text en Copyright © 2015, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Nizzardo, Monica Simone, Chiara Dametti, Sara Salani, Sabrina Ulzi, Gianna Pagliarani, Serena Rizzo, Federica Frattini, Emanuele Pagani, Franco Bresolin, Nereo Comi, Giacomo Corti, Stefania Spinal muscular atrophy phenotype is ameliorated in human motor neurons by SMN increase via different novel RNA therapeutic approaches |
title | Spinal muscular atrophy phenotype is ameliorated in human motor neurons by SMN increase via different novel RNA therapeutic approaches |
title_full | Spinal muscular atrophy phenotype is ameliorated in human motor neurons by SMN increase via different novel RNA therapeutic approaches |
title_fullStr | Spinal muscular atrophy phenotype is ameliorated in human motor neurons by SMN increase via different novel RNA therapeutic approaches |
title_full_unstemmed | Spinal muscular atrophy phenotype is ameliorated in human motor neurons by SMN increase via different novel RNA therapeutic approaches |
title_short | Spinal muscular atrophy phenotype is ameliorated in human motor neurons by SMN increase via different novel RNA therapeutic approaches |
title_sort | spinal muscular atrophy phenotype is ameliorated in human motor neurons by smn increase via different novel rna therapeutic approaches |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4485234/ https://www.ncbi.nlm.nih.gov/pubmed/26123042 http://dx.doi.org/10.1038/srep11746 |
work_keys_str_mv | AT nizzardomonica spinalmuscularatrophyphenotypeisamelioratedinhumanmotorneuronsbysmnincreaseviadifferentnovelrnatherapeuticapproaches AT simonechiara spinalmuscularatrophyphenotypeisamelioratedinhumanmotorneuronsbysmnincreaseviadifferentnovelrnatherapeuticapproaches AT damettisara spinalmuscularatrophyphenotypeisamelioratedinhumanmotorneuronsbysmnincreaseviadifferentnovelrnatherapeuticapproaches AT salanisabrina spinalmuscularatrophyphenotypeisamelioratedinhumanmotorneuronsbysmnincreaseviadifferentnovelrnatherapeuticapproaches AT ulzigianna spinalmuscularatrophyphenotypeisamelioratedinhumanmotorneuronsbysmnincreaseviadifferentnovelrnatherapeuticapproaches AT pagliaraniserena spinalmuscularatrophyphenotypeisamelioratedinhumanmotorneuronsbysmnincreaseviadifferentnovelrnatherapeuticapproaches AT rizzofederica spinalmuscularatrophyphenotypeisamelioratedinhumanmotorneuronsbysmnincreaseviadifferentnovelrnatherapeuticapproaches AT frattiniemanuele spinalmuscularatrophyphenotypeisamelioratedinhumanmotorneuronsbysmnincreaseviadifferentnovelrnatherapeuticapproaches AT paganifranco spinalmuscularatrophyphenotypeisamelioratedinhumanmotorneuronsbysmnincreaseviadifferentnovelrnatherapeuticapproaches AT bresolinnereo spinalmuscularatrophyphenotypeisamelioratedinhumanmotorneuronsbysmnincreaseviadifferentnovelrnatherapeuticapproaches AT comigiacomo spinalmuscularatrophyphenotypeisamelioratedinhumanmotorneuronsbysmnincreaseviadifferentnovelrnatherapeuticapproaches AT cortistefania spinalmuscularatrophyphenotypeisamelioratedinhumanmotorneuronsbysmnincreaseviadifferentnovelrnatherapeuticapproaches |