Cargando…

A Bayesian approach to optimizing cryopreservation protocols

Cryopreservation is beset with the challenge of protocol alignment across a wide range of cell types and process variables. By taking a cross-sectional assessment of previously published cryopreservation data (sample means and standard errors) as preliminary meta-data, a decision tree learning analy...

Descripción completa

Detalles Bibliográficos
Autor principal: Sambu, Sammy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4485240/
https://www.ncbi.nlm.nih.gov/pubmed/26131379
http://dx.doi.org/10.7717/peerj.1039
Descripción
Sumario:Cryopreservation is beset with the challenge of protocol alignment across a wide range of cell types and process variables. By taking a cross-sectional assessment of previously published cryopreservation data (sample means and standard errors) as preliminary meta-data, a decision tree learning analysis (DTLA) was performed to develop an understanding of target survival using optimized pruning methods based on different approaches. Briefly, a clear direction on the decision process for selection of methods was developed with key choices being the cooling rate, plunge temperature on the one hand and biomaterial choice, use of composites (sugars and proteins as additional constituents), loading procedure and cell location in 3D scaffolding on the other. Secondly, using machine learning and generalized approaches via the Naïve Bayes Classification (NBC) method, these metadata were used to develop posterior probabilities for combinatorial approaches that were implicitly recorded in the metadata. These latter results showed that newer protocol choices developed using probability elicitation techniques can unearth improved protocols consistent with multiple unidimensionally-optimized physical protocols. In conclusion, this article proposes the use of DTLA models and subsequently NBC for the improvement of modern cryopreservation techniques through an integrative approach.