Cargando…

The miRNA Profile of Platelets Stored in a Blood Bank and Its Relation to Cellular Damage from Storage

Millions of blood products are transfused each year, and many lives are directly affected by transfusion. Platelet concentrate (PC) is one of the main products derived from blood. Even under good storage conditions, PC is likely to suffer cell damage. The shape of platelets changes after 5 to 7 days...

Descripción completa

Detalles Bibliográficos
Autores principales: Pontes, Thaís Brilhante, Moreira-Nunes, Caroline de Fátima Aquino, Maués, Jersey Heitor da Silva, Lamarão, Letícia Martins, de Lemos, José Alexandre Rodrigues, Montenegro, Raquel Carvalho, Burbano, Rommel Mário Rodriguez
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4486185/
https://www.ncbi.nlm.nih.gov/pubmed/26121269
http://dx.doi.org/10.1371/journal.pone.0129399
Descripción
Sumario:Millions of blood products are transfused each year, and many lives are directly affected by transfusion. Platelet concentrate (PC) is one of the main products derived from blood. Even under good storage conditions, PC is likely to suffer cell damage. The shape of platelets changes after 5 to 7 days of storage at 22°C. Taking into consideration that some platelet proteins undergo changes in their shape and functionality during PC storage. Sixteen PC bags were collected and each PC bag tube was cut into six equal pieces to perform experiments with platelets from six different days of storage. Thus, on the first day of storage, 1/6 of the tube was used for miRNA extraction, and the remaining 5/6 was stored under the same conditions until extraction of miRNAs on each the following five days. Samples were sequenced on an Illumina Platform to demonstrate the most highly expressed miRNAs. Three miRNAs, mir127, mir191 and mir320a were validated by real-time quantitative PCR (RQ-PCR) in 100 PC bags tubes. Our method suggests, the use of the miRNAs mir127 and mir320a as biomarkers to assess the "validity period" of PC bags stored in blood banks for long periods. Thus, bags can be tested on the 5th day of storage for the relative expression levels of mir127 and mir320a. Thus, we highlight candidate miRNAs as biomarkers of storage damage that can be used as tools to evaluate the quality of stored PC. The use of miRNAs as biomarkers of damage is unprecedented and will contribute to improved quality of blood products for transfusions.