Cargando…

Effects of ankle–foot braces on medial gastrocnemius morphometrics and gait in children with cerebral palsy

PURPOSE: In children with cerebral palsy (CP), braces are used to counteract progressive joint and muscle contracture and improve function. We examined the effects of positional ankle–foot braces on contracture of the medial gastrocnemius (MG) and gait in children with CP while referencing to typica...

Descripción completa

Detalles Bibliográficos
Autores principales: Hösl, Matthias, Böhm, Harald, Arampatzis, Adamantios, Döderlein, Leonhard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4486505/
https://www.ncbi.nlm.nih.gov/pubmed/26108740
http://dx.doi.org/10.1007/s11832-015-0664-x
Descripción
Sumario:PURPOSE: In children with cerebral palsy (CP), braces are used to counteract progressive joint and muscle contracture and improve function. We examined the effects of positional ankle–foot braces on contracture of the medial gastrocnemius (MG) and gait in children with CP while referencing to typically developing children. METHODS: Seventeen independently ambulant children with CP and calf muscle contracture (age 10.4 ± 3.0y) and 17 untreated typically developing peers (age 9.5 ± 2.6y) participated. Children with CP were analysed before and 16 ± 4 weeks after ankle–foot bracing. MG muscle belly length and thickness, tendon and fascicle length, as well as their extensibility were captured by 2D ultrasound and 3D motion capturing during passive, manually applied stretches. In addition, 3D gait analysis was conducted. RESULTS: Prior to bracing, the MG muscle–tendon unit in children with CP was 22 % less extensible. At matched amounts of muscle–tendon unit stretch, the muscle belly and fascicles in CP were 7 % and 14 % shorter while the tendon was 11 % longer. Spastic fascicles displayed 32 % less extensibility than controls. Brace wear increased passive dorsiflexion primarily with the knees flexed. During gait, children walked faster and foot lift in swing improved. MG muscle belly and tendon length showed little change, but fascicles further shortened (−11 %) and muscle thickness (−8 %) decreased. CONCLUSIONS: Use of ankle–foot braces improves function but may lead to a loss of sarcomeres in series, which could explain the shortened fascicles. To potentially induce gastrocnemius muscle growth, braces may also need to extend the knee or complementary training may be necessary to offset the immobilizing effects of braces.