Cargando…
Trans-spliced Cas9 allows cleavage of HBB and CCR5 genes in human cells using compact expression cassettes
CRISPR/Cas9 systems have been used in a wide variety of biological studies; however, the large size of CRISPR/Cas9 presents challenges in packaging it within adeno-associated viruses (AAVs) for clinical applications. We identified a two-cassette system expressing pieces of the S. pyogenes Cas9 (SpCa...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4486982/ https://www.ncbi.nlm.nih.gov/pubmed/26126518 http://dx.doi.org/10.1038/srep10777 |
_version_ | 1782378951280164864 |
---|---|
author | Fine, Eli J. Appleton, Caleb M. White, Douglas E. Brown, Matthew T. Deshmukh, Harshavardhan Kemp, Melissa L. Bao, Gang |
author_facet | Fine, Eli J. Appleton, Caleb M. White, Douglas E. Brown, Matthew T. Deshmukh, Harshavardhan Kemp, Melissa L. Bao, Gang |
author_sort | Fine, Eli J. |
collection | PubMed |
description | CRISPR/Cas9 systems have been used in a wide variety of biological studies; however, the large size of CRISPR/Cas9 presents challenges in packaging it within adeno-associated viruses (AAVs) for clinical applications. We identified a two-cassette system expressing pieces of the S. pyogenes Cas9 (SpCas9) protein which splice together in cellula to form a functional protein capable of site-specific DNA cleavage. With specific CRISPR guide strands, we demonstrated the efficacy of this system in cleaving the HBB and CCR5 genes in human HEK-293T cells as a single Cas9 and as a pair of Cas9 nickases. The trans-spliced SpCas9 (tsSpCas9) displayed ~35% of the nuclease activity compared with the wild-type SpCas9 (wtSpCas9) at standard transfection doses, but had substantially decreased activity at lower dosing levels. The greatly reduced open reading frame length of the tsSpCas9 relative to wtSpCas9 potentially allows for more complex and longer genetic elements to be packaged into an AAV vector including tissue-specific promoters, multiplexed guide RNA expression, and effector domain fusions to SpCas9. For unknown reasons, the tsSpCas9 system did not work in all cell types tested. The use of protein trans-splicing may help facilitate exciting new avenues of research and therapeutic applications through AAV-based delivery of CRISPR/Cas9 systems. |
format | Online Article Text |
id | pubmed-4486982 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-44869822015-07-08 Trans-spliced Cas9 allows cleavage of HBB and CCR5 genes in human cells using compact expression cassettes Fine, Eli J. Appleton, Caleb M. White, Douglas E. Brown, Matthew T. Deshmukh, Harshavardhan Kemp, Melissa L. Bao, Gang Sci Rep Article CRISPR/Cas9 systems have been used in a wide variety of biological studies; however, the large size of CRISPR/Cas9 presents challenges in packaging it within adeno-associated viruses (AAVs) for clinical applications. We identified a two-cassette system expressing pieces of the S. pyogenes Cas9 (SpCas9) protein which splice together in cellula to form a functional protein capable of site-specific DNA cleavage. With specific CRISPR guide strands, we demonstrated the efficacy of this system in cleaving the HBB and CCR5 genes in human HEK-293T cells as a single Cas9 and as a pair of Cas9 nickases. The trans-spliced SpCas9 (tsSpCas9) displayed ~35% of the nuclease activity compared with the wild-type SpCas9 (wtSpCas9) at standard transfection doses, but had substantially decreased activity at lower dosing levels. The greatly reduced open reading frame length of the tsSpCas9 relative to wtSpCas9 potentially allows for more complex and longer genetic elements to be packaged into an AAV vector including tissue-specific promoters, multiplexed guide RNA expression, and effector domain fusions to SpCas9. For unknown reasons, the tsSpCas9 system did not work in all cell types tested. The use of protein trans-splicing may help facilitate exciting new avenues of research and therapeutic applications through AAV-based delivery of CRISPR/Cas9 systems. Nature Publishing Group 2015-07-01 /pmc/articles/PMC4486982/ /pubmed/26126518 http://dx.doi.org/10.1038/srep10777 Text en Copyright © 2015, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Fine, Eli J. Appleton, Caleb M. White, Douglas E. Brown, Matthew T. Deshmukh, Harshavardhan Kemp, Melissa L. Bao, Gang Trans-spliced Cas9 allows cleavage of HBB and CCR5 genes in human cells using compact expression cassettes |
title | Trans-spliced Cas9 allows cleavage of HBB and CCR5 genes in human cells using compact expression cassettes |
title_full | Trans-spliced Cas9 allows cleavage of HBB and CCR5 genes in human cells using compact expression cassettes |
title_fullStr | Trans-spliced Cas9 allows cleavage of HBB and CCR5 genes in human cells using compact expression cassettes |
title_full_unstemmed | Trans-spliced Cas9 allows cleavage of HBB and CCR5 genes in human cells using compact expression cassettes |
title_short | Trans-spliced Cas9 allows cleavage of HBB and CCR5 genes in human cells using compact expression cassettes |
title_sort | trans-spliced cas9 allows cleavage of hbb and ccr5 genes in human cells using compact expression cassettes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4486982/ https://www.ncbi.nlm.nih.gov/pubmed/26126518 http://dx.doi.org/10.1038/srep10777 |
work_keys_str_mv | AT fineelij transsplicedcas9allowscleavageofhbbandccr5genesinhumancellsusingcompactexpressioncassettes AT appletoncalebm transsplicedcas9allowscleavageofhbbandccr5genesinhumancellsusingcompactexpressioncassettes AT whitedouglase transsplicedcas9allowscleavageofhbbandccr5genesinhumancellsusingcompactexpressioncassettes AT brownmatthewt transsplicedcas9allowscleavageofhbbandccr5genesinhumancellsusingcompactexpressioncassettes AT deshmukhharshavardhan transsplicedcas9allowscleavageofhbbandccr5genesinhumancellsusingcompactexpressioncassettes AT kempmelissal transsplicedcas9allowscleavageofhbbandccr5genesinhumancellsusingcompactexpressioncassettes AT baogang transsplicedcas9allowscleavageofhbbandccr5genesinhumancellsusingcompactexpressioncassettes |