Cargando…

Recovery of Background Structures in Nanoscale Helium Ion Microscope Imaging

This paper discusses a two step enhancement technique applicable to noisy Helium Ion Microscope images in which background structures are not easily discernible due to a weak signal. The method is based on a preliminary adaptive histogram equalization, followed by ‘slow motion’ low-exponent Lévy fra...

Descripción completa

Detalles Bibliográficos
Autores principales: Carasso, Alfred S, Vladár, András E
Formato: Online Artículo Texto
Lenguaje:English
Publicado: [Gaithersburg, MD] : U.S. Dept. of Commerce, National Institute of Standards and Technology 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4487283/
https://www.ncbi.nlm.nih.gov/pubmed/26601050
http://dx.doi.org/10.6028/jres.119.030
Descripción
Sumario:This paper discusses a two step enhancement technique applicable to noisy Helium Ion Microscope images in which background structures are not easily discernible due to a weak signal. The method is based on a preliminary adaptive histogram equalization, followed by ‘slow motion’ low-exponent Lévy fractional diffusion smoothing. This combined approach is unexpectedly effective, resulting in a companion enhanced image in which background structures are rendered much more visible, and noise is significantly reduced, all with minimal loss of image sharpness. The method also provides useful enhancements of scanning charged-particle microscopy images obtained by composing multiple drift-corrected ‘fast scan’ frames. The paper includes software routines, written in Interactive Data Language (IDL),(1) that can perform the above image processing tasks.