Cargando…

Calibration of Traceable Solid Mock (131)I Phantoms Used in an International SPECT Image Quantification Comparison

The International Atomic Energy Agency (IAEA) has organized an international comparison to assess Single Photon Emission Computed Tomography (SPECT) image quantification capabilities in 12 countries. Iodine-131 was chosen as the radionuclide for the comparison because of its wide use around the worl...

Descripción completa

Detalles Bibliográficos
Autores principales: Zimmerman, BE, Pibida, L, King, LE, Bergeron, DE, Cessna, JT, Mille, MM
Formato: Online Artículo Texto
Lenguaje:English
Publicado: [Gaithersburg, MD] : U.S. Dept. of Commerce, National Institute of Standards and Technology 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4487311/
https://www.ncbi.nlm.nih.gov/pubmed/26401437
http://dx.doi.org/10.6028/jres.118.017
Descripción
Sumario:The International Atomic Energy Agency (IAEA) has organized an international comparison to assess Single Photon Emission Computed Tomography (SPECT) image quantification capabilities in 12 countries. Iodine-131 was chosen as the radionuclide for the comparison because of its wide use around the world, but for logistical reasons solid (133)Ba sources were used as a long-lived surrogate for (131)I. For this study, we designed a set of solid cylindrical sources so that each site could have a set of phantoms (having nominal volumes of 2 mL, 4 mL, 6 mL, and 23 mL) with traceable activity calibrations so that the results could be properly compared. We also developed a technique using two different detection methods for individually calibrating the sources for (133)Ba activity based on a National standard. This methodology allows for the activity calibration of each (133)Ba source with a standard uncertainty on the activity of 1.4 % for the high-level 2-, 4-, and 6-mL sources and 1.7 % for the lower-level 23 mL cylinders. This level of uncertainty allows for these sources to be used for the intended comparison exercise, as well as in other SPECT image quantification studies.