Cargando…

4S Peak Filling – baseline estimation by iterative mean suppression

A novel baseline estimation procedure building on previously published works is presented. • The core of the estimation is an iterative spectrum suppression consisting of a moving window minimum replacement (adapted from Friedrichs [1]). • Four, easily understandable, parameters control placement of...

Descripción completa

Detalles Bibliográficos
Autor principal: Liland, Kristian Hovde
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4487348/
https://www.ncbi.nlm.nih.gov/pubmed/26150981
http://dx.doi.org/10.1016/j.mex.2015.02.009
_version_ 1782378993012441088
author Liland, Kristian Hovde
author_facet Liland, Kristian Hovde
author_sort Liland, Kristian Hovde
collection PubMed
description A novel baseline estimation procedure building on previously published works is presented. • The core of the estimation is an iterative spectrum suppression consisting of a moving window minimum replacement (adapted from Friedrichs [1]). • Four, easily understandable, parameters control placement of the baseline relative to the noise band around the signal (adapted from Eilers [2]) and the flexibility in different situations. • The method is especially suited for non-linear baselines with local variations and for resolving peak clusters in qualitative analyses.
format Online
Article
Text
id pubmed-4487348
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-44873482015-07-06 4S Peak Filling – baseline estimation by iterative mean suppression Liland, Kristian Hovde MethodsX Biochemistry, Genetics and Molecular Biology A novel baseline estimation procedure building on previously published works is presented. • The core of the estimation is an iterative spectrum suppression consisting of a moving window minimum replacement (adapted from Friedrichs [1]). • Four, easily understandable, parameters control placement of the baseline relative to the noise band around the signal (adapted from Eilers [2]) and the flexibility in different situations. • The method is especially suited for non-linear baselines with local variations and for resolving peak clusters in qualitative analyses. Elsevier 2015-02-21 /pmc/articles/PMC4487348/ /pubmed/26150981 http://dx.doi.org/10.1016/j.mex.2015.02.009 Text en © 2015 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Biochemistry, Genetics and Molecular Biology
Liland, Kristian Hovde
4S Peak Filling – baseline estimation by iterative mean suppression
title 4S Peak Filling – baseline estimation by iterative mean suppression
title_full 4S Peak Filling – baseline estimation by iterative mean suppression
title_fullStr 4S Peak Filling – baseline estimation by iterative mean suppression
title_full_unstemmed 4S Peak Filling – baseline estimation by iterative mean suppression
title_short 4S Peak Filling – baseline estimation by iterative mean suppression
title_sort 4s peak filling – baseline estimation by iterative mean suppression
topic Biochemistry, Genetics and Molecular Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4487348/
https://www.ncbi.nlm.nih.gov/pubmed/26150981
http://dx.doi.org/10.1016/j.mex.2015.02.009
work_keys_str_mv AT lilandkristianhovde 4speakfillingbaselineestimationbyiterativemeansuppression