Cargando…

Divergence at the edges: peripatric isolation in the montane spiny throated reed frog complex

BACKGROUND: Peripatric speciation and peripheral isolation have uncertain importance in species accumulation, and are largely overshadowed by assumed dominance of allopatric modes of speciation. Understanding the role of different speciation mechanisms within biodiversity hotspots is central to unde...

Descripción completa

Detalles Bibliográficos
Autores principales: Lawson, Lucinda P., Bates, John M., Menegon, Michele, Loader, Simon P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4487588/
https://www.ncbi.nlm.nih.gov/pubmed/26126573
http://dx.doi.org/10.1186/s12862-015-0384-3
_version_ 1782379027237961728
author Lawson, Lucinda P.
Bates, John M.
Menegon, Michele
Loader, Simon P.
author_facet Lawson, Lucinda P.
Bates, John M.
Menegon, Michele
Loader, Simon P.
author_sort Lawson, Lucinda P.
collection PubMed
description BACKGROUND: Peripatric speciation and peripheral isolation have uncertain importance in species accumulation, and are largely overshadowed by assumed dominance of allopatric modes of speciation. Understanding the role of different speciation mechanisms within biodiversity hotspots is central to understanding the generation of biological diversity. Here, we use a phylogeographic analysis of the spiny-throated reed frogs and examine sister pairings with unbalanced current distributional ranges for characteristics of peripatric speciation. We further investigate whether forest/grassland mosaic adapted species are more likely created through peripatric speciation due to instability of this habitat type. RESULTS: We reconstructed a multi-locus molecular phylogeny of spiny-throated reed frogs which we then combined with comparative morphologic data to delimit species and analyze historical demographic change; identifying three new species. Three potential peripatric speciation events were identified along with one case of allopatric speciation. Peripatric speciation is supported through uneven potential and realized distributions and uneven population size estimates based on field collections. An associated climate shift was observed in most potentially peripatric splits. Morphological variation was highest in sexually dimorphic traits such as body size and gular shape, but this variation was not limited to peripatric species pairs as hypothesized. The potentially allopatric species pair showed no niche shifts and equivalent effective population sizes, ruling out peripatry in that speciation event. Two major ecological niche shifts were recovered within this radiation, possibly as adaptations to occupy areas of grassland that became more prevalent in the last 5 million years. Restricted and fluctuating grassland mosaics within forests might promote peripatric speciation in the Eastern Arc Biodiversity Hotspot (EABH). CONCLUSIONS: In our case study, peripatric speciation appears to be an important driver of diversity within the EABH biodiversity hotspot, implying it could be a significant speciation mechanism in highly fragmented ecosystems. Extensive peripatric speciation in this montane archipelago may explain the abundance of discrete lineages within the limited area of the EABH, as inferred in remote island archipelagos. Future phylogenetic studies incorporating demographic and spatial analyses will clarify the role of peripatric speciation in creating biodiversity hotspots. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12862-015-0384-3) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-4487588
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-44875882015-07-02 Divergence at the edges: peripatric isolation in the montane spiny throated reed frog complex Lawson, Lucinda P. Bates, John M. Menegon, Michele Loader, Simon P. BMC Evol Biol Research Article BACKGROUND: Peripatric speciation and peripheral isolation have uncertain importance in species accumulation, and are largely overshadowed by assumed dominance of allopatric modes of speciation. Understanding the role of different speciation mechanisms within biodiversity hotspots is central to understanding the generation of biological diversity. Here, we use a phylogeographic analysis of the spiny-throated reed frogs and examine sister pairings with unbalanced current distributional ranges for characteristics of peripatric speciation. We further investigate whether forest/grassland mosaic adapted species are more likely created through peripatric speciation due to instability of this habitat type. RESULTS: We reconstructed a multi-locus molecular phylogeny of spiny-throated reed frogs which we then combined with comparative morphologic data to delimit species and analyze historical demographic change; identifying three new species. Three potential peripatric speciation events were identified along with one case of allopatric speciation. Peripatric speciation is supported through uneven potential and realized distributions and uneven population size estimates based on field collections. An associated climate shift was observed in most potentially peripatric splits. Morphological variation was highest in sexually dimorphic traits such as body size and gular shape, but this variation was not limited to peripatric species pairs as hypothesized. The potentially allopatric species pair showed no niche shifts and equivalent effective population sizes, ruling out peripatry in that speciation event. Two major ecological niche shifts were recovered within this radiation, possibly as adaptations to occupy areas of grassland that became more prevalent in the last 5 million years. Restricted and fluctuating grassland mosaics within forests might promote peripatric speciation in the Eastern Arc Biodiversity Hotspot (EABH). CONCLUSIONS: In our case study, peripatric speciation appears to be an important driver of diversity within the EABH biodiversity hotspot, implying it could be a significant speciation mechanism in highly fragmented ecosystems. Extensive peripatric speciation in this montane archipelago may explain the abundance of discrete lineages within the limited area of the EABH, as inferred in remote island archipelagos. Future phylogenetic studies incorporating demographic and spatial analyses will clarify the role of peripatric speciation in creating biodiversity hotspots. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12862-015-0384-3) contains supplementary material, which is available to authorized users. BioMed Central 2015-07-01 /pmc/articles/PMC4487588/ /pubmed/26126573 http://dx.doi.org/10.1186/s12862-015-0384-3 Text en © Lawson et al. 2015 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Lawson, Lucinda P.
Bates, John M.
Menegon, Michele
Loader, Simon P.
Divergence at the edges: peripatric isolation in the montane spiny throated reed frog complex
title Divergence at the edges: peripatric isolation in the montane spiny throated reed frog complex
title_full Divergence at the edges: peripatric isolation in the montane spiny throated reed frog complex
title_fullStr Divergence at the edges: peripatric isolation in the montane spiny throated reed frog complex
title_full_unstemmed Divergence at the edges: peripatric isolation in the montane spiny throated reed frog complex
title_short Divergence at the edges: peripatric isolation in the montane spiny throated reed frog complex
title_sort divergence at the edges: peripatric isolation in the montane spiny throated reed frog complex
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4487588/
https://www.ncbi.nlm.nih.gov/pubmed/26126573
http://dx.doi.org/10.1186/s12862-015-0384-3
work_keys_str_mv AT lawsonlucindap divergenceattheedgesperipatricisolationinthemontanespinythroatedreedfrogcomplex
AT batesjohnm divergenceattheedgesperipatricisolationinthemontanespinythroatedreedfrogcomplex
AT menegonmichele divergenceattheedgesperipatricisolationinthemontanespinythroatedreedfrogcomplex
AT loadersimonp divergenceattheedgesperipatricisolationinthemontanespinythroatedreedfrogcomplex